Displaying all 9 publications

Abstract:
Sort:
  1. Afreen S, Muthoosamy K, Manickam S, Hashim U
    Biosens Bioelectron, 2015 Jan 15;63:354-364.
    PMID: 25125029 DOI: 10.1016/j.bios.2014.07.044
    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene-metal matrix for the detection of tumor and cancer cells is also possible by the inclusion of fullerene in single-walled carbon nanotubes (SWCNTs) known as peapods as well as in double-walled carbon nanotubes (DWCNTs), to augment the effectiveness of biosensors. This review discusses various approaches that have been reported for functionalizing fullerene (C60) derivatives and their application in different types of biosensor fabrication.
    Matched MeSH terms: Ferrous Compounds/chemistry
  2. Leong LH, Kandaiya S, Seng NB
    Australas Phys Eng Sci Med, 2007 Jun;30(2):135-40.
    PMID: 17682403
    The oxidation of ferrous to ferric ions due to ionizing radiation has been used for chemical dosimetry since 1927. The introduction of metal indicator dye xylenol orange (XO) sensitises the measurement of ferric ion yield. A ferrous sulphate- agarose- xylenol orange (FAX) gel was prepared and the gel then exposed to dose ranging from 0.2 to 10 Gy using various high energy photon and electron beams from a linear accelerator. Some general characteristics of FAX such as energy dependence, optical density (OD)-dose relationship, reproducibility and auto-oxidation of ferrous ions were analysed. The radiation yield G of the gel was calculated for gels prepared in oxygen and in air and the values were 46.3 +/- 2.1 and 40.9 +/- 1.4 Fe3+ per 100 eV for photons respectively. However for stock gel which was kept for 5 days pre-irradiation the G value decreased to 36.6 +/- 1.1. The gel shows linearity in OD-dose relationship, energy independence and reproducibility over the dose range investigated. Auto-oxidation of ferrous ions resulted in optical density changes of less than 1.5% per day.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  3. Bean LS, Heng LY, Yamin BM, Ahmad M
    Bioelectrochemistry, 2005 Feb;65(2):157-62.
    PMID: 15713567
    A single-step fabrication of a glucose biosensor with simultaneous immobilization of both ferrocene mediator and glucose oxidase in a photocurable methacrylic film consisting of poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) was reported. The entrapped ferrocene showed reversible redox behaviour in the photocured film and no significant leaching of both entrapped ferrocene and enzyme glucose oxidase was observed because of the low water absorption properties of the co-polymer films. From electrochemical studies, ferrocene entrapped in the co-polymer film demonstrated slow diffusion properties. A linear glucose response range of 2-11 mM was obtained at low applied potential of +0.25 V. The glucose biosensor fabricated by this photocuring method yielded sensor reproducibility and repeatability with relative standard deviation of <10% and long-term stability of up to 14 days. The main advantage of the use of photocurable procedure is that biosensor membrane fabrication can be performed in a single step without any lengthy chemical immobilization of enzyme.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  4. Mohammad R, Ahmad M, Heng LY
    Sensors (Basel), 2013 Aug 05;13(8):10014-26.
    PMID: 23921830 DOI: 10.3390/s130810014
    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5-99.0 µM with detection limit of 1.94 µM. A good relative standard deviation (RSD) for reproducibility of 6.4%-9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  5. Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT
    Eur J Med Chem, 2015 Aug 28;101:534-51.
    PMID: 26188909 DOI: 10.1016/j.ejmech.2015.07.009
    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development.
    Matched MeSH terms: Ferrous Compounds/chemistry
  6. Tisa F, Davoody M, Abdul Raman AA, Daud WM
    PLoS One, 2015;10(4):e0119933.
    PMID: 25849556 DOI: 10.1371/journal.pone.0119933
    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082).
    Matched MeSH terms: Ferrous Compounds/chemistry*
  7. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  8. Yan G, Li Q, Hong X, Gopinath SCB, Anbu P, Li C, et al.
    Mikrochim Acta, 2021 05 11;188(6):185.
    PMID: 33977395 DOI: 10.1007/s00604-021-04836-8
    An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
    Matched MeSH terms: Ferrous Compounds/chemistry
  9. Zulkeflee Z, Aris AZ, Shamsuddin ZH, Yusoff MK
    ScientificWorldJournal, 2012;2012:495659.
    PMID: 22997497
    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.
    Matched MeSH terms: Ferrous Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links