Displaying all 12 publications

Abstract:
Sort:
  1. Dinh TD, Ambak MA, Hassan A, Phuong NT
    Pak J Biol Sci, 2007 Oct 01;10(19):3284-94.
    PMID: 19090143
    This study describe the reproductive biological characteristics and population parameters of the goby, Pseudapocryptes elongatus (Cuvier, 1816), in the coastal mud flat areas of the Mekong Delta, Vietnam. A total of 1058 specimens was collected from January 2004 to June 2005 and results showed that the breeding season occurred with two spawning peaks in July and October. Length at first maturity (L(m)) was 15.4 and 16.3 cm for females and males, respectively. The batch fecundity estimates ranged from 2,652 to 29,406 hydrated oocytes per ovary in the fish ranging from 12.8 to 22.4 cm TL. Length frequency data of the goby ranging from 9.0 to 24.0 cm TL were analyzed using the FiSAT II software. The von Bertalanffy growth parameters were determined as L8 = 25.9 cm, K = 0.66 year(-1) and t(o) = - 0.26 year(-1). The longevity (t(max)) of the goby was estimated to be 4.55 years. There were two recruitment peaks with very different magnitudes and the means of these two peaks were separated by an interval of 5 months. Length at first capture (L(c)) was 10.05 cm, the instantaneous fishing mortality rate (F = 1.38 year(-1)) and natural mortality rate (M = 1.46 year(-1)) accounted for 49 and 51% of the total mortality (Z = 2.84 year(-1)), respectively. Relative yield-per-recruit and biomass-per-recruit analyses gave E(max) = 0.65, E0.1 = 0.55 and E0.5 = 0.33. Results show that the fish stock is subjected to growth overexploitation.
    Matched MeSH terms: Fishes/growth & development
  2. Lokman HS
    Arch Int Physiol Biochim Biophys, 1993 Sep-Oct;101(5):253-6.
    PMID: 7508281
    Zooplankton samples were collected from the indigenous tropical brackish water lagoon during the wet monsoon (January and February 1990) and the dry monsoon (April and May 1990). The dominant copepod species in the zooplankton community comprising of Oithona sp (especially O. nana and O. robusta) accounted for more than 70% of the zooplankton in January and was gradually replaced by other zooplanktonic species later in the dry season. The lipid contents in zooplankton varied from 0.18 to 1.04% wet weight or 1.14 to 5.92% dry weight respectively. The major fatty acid contents of the zooplankton showed high concentration of 14:0, 16:0, 18:1, 20:5 omega 3 and 22:6 omega 3 especially in the wet season. It also contained high omega-3 highly unsaturated fatty acid series necessary for the growth of commercial fish larvae. It has a better food value than the normally use food organism, brine shrimp; thus reflecting its potential use as food organism for fish larval rearing.
    Matched MeSH terms: Fishes/growth & development*
  3. Jalal KC, Kamaruzzaman BY, Arshad A, Ara R, Rahman MF
    Pak J Biol Sci, 2012 Jun 15;15(12):576-82.
    PMID: 24191619
    A study on diversity and distribution of fish communities and water qualities were carried out from January 2009 to December 2010 to cover monsoon and non-monsoon at Kuantan estuary, Pahang, Malaysia. A total of 19 species of primary marine fish belong to 12 families were recorded. Out of 311 individuals the fish fauna was dominated by Ariidae followed by Lutjanidae and Lactaridae. As such Ariidae contributes 50% of the fish caught in the study area and its diversity index (H') was 0.97. A The Ariidae family consist of four (4) species; Arius maculatus, Arius sumatranus, Arius tenuispinis and Arius thalassinus. The Ariidae family can be found in all stations as they are euryhaline (highly tolerant to salinity) and this fish family are known to be a hardy estuarine catfish. Among all species in family Ariidae, Arius thalassinus was the most dominant (23%) among all species. As such collected species showed highest species diversity (0.34) followed by Arius tenuispinis (0.25) compared to other species. Arius tenuispinis alone contributed 11.90% among the samples caught from all stations. The fishes were caught and recorded highest in September-December. Pseudorhombus quinque ocellatus, Nibea soldado, Sardinella fimbriata, Toxotes jaculatrix, Dasyatis ushiei, Setipinna taty were the least dominant in the Kuantan estuary with 9.33% of total abundance. Physico-temperatures, such as temperature (22.03-30 degrees C), Conductivity (10.342.43 mS cm(-1)), TDS (0.06-26.34 mg L(-1)), salinity (0.05-29.09 ppt), DO (6.37-8.38 mg L(-1)), pH (4.97-8.03), Chl a (0.01-1.33 microg L(-1)), nitrite (0.01-0.08 mg L(-1)), nitrate (0.60-0.88 mg L(-1)), phosphate (0.24-0.40 mg L(-1)). Nevertheless, the study envisages that the water quality and fish diversity are still conducive in the Kuantan estuary. The fish diversity of Pahang estuary was high monsoon compared to non-monsoons. The station 4 (LKIM fishing boat jetty and adjacent Hospital Kuantan) is the most polluted area due to the presence of several outskirts could be alarming for the sustainable development of fish and other aquatic organisms in Kuantan estuary in the long run.
    Matched MeSH terms: Fishes/growth & development*
  4. Endut A, Jusoh A, Ali N, Wan Nik WB, Hassan A
    Bioresour Technol, 2010 Mar;101(5):1511-7.
    PMID: 19819130 DOI: 10.1016/j.biortech.2009.09.040
    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate.
    Matched MeSH terms: Fishes/growth & development
  5. Ng WK
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S473-6.
    PMID: 12492637
    One key ingredient used in the formulation of aquafeed is fish oil, which is produced from small marine pelagic fish and represents a finite fishery resource. At the present time, global fish oil production has reached a plateau and is not expected to increase beyond current levels. Recent estimates suggest that fish oils may be unable to meet demands from the rapidly growing aquaculture industry by as early as 2005. Therefore, there is currently great interest within the aquafeed industry in evaluating alternatives to fish oils. The ever-expanding oil palm cultivation in Malaysia and other tropical countries offers the possibility of an increased and constant availability of palm oil products for aquafeed formulation. Research into the use of palm oil in aquafeed begun around the mid-1990s and this review examines some of the findings from these studies. The use of palm oil in fish diets has generally shown encouraging results. Improved growth, feed efficiency, protein utilisation, reproductive performance and higher concentrations of alpha-tocopherol in fish fillets have been reported. Recent evidence for the ability of palm oil to substitute for fish oil in catfish diets is reviewed. The potential of palm oil use in aquafeed and future experimental directions are suggested. The aquaculture feed industry offers a great avenue to increase and diversify the use of palm oil-based products.
    Matched MeSH terms: Catfishes/growth & development; Fishes/growth & development*
  6. Rezagholinejad S, Arshad A, Amin SMN, Ara R
    J Environ Biol, 2016 07;37(4 Spec No):697-703.
    PMID: 28779728
    The composition of fish larvae and their diversity in different habitats are very important for fisheries management. Larval fishes were investigated in a mangrove estuary of Marudu Bay, Sabah, Malaysia from October 2012 to September 2013 at five different sites. Monthly samples of fish larvae were collected at five sampling sites by a plankton net with a mouth opening of 40.5 cm in diameter. In total, 3879 larval fish were caught in the investigated area. The mean density of ichthyoplankton at this area was 118 larvae/100 m(3). The fish larval assemblage comprised of 20 families whereas 13 families occurred at St1, 16 at St2, 16 at St3, 12 at St4 and 16 at St5. The top major families were Sillaginidae, Engraulidae, Mugilidae and Sparidae with Sillaginidae consisted 44% of total larval composition. St3 with 143 larvae/100 m(3) had the highest density amongst the stations which was due to higher abundance of Sillaginidae. Shannon-Wiener diversity index represented significant variation during monsoon and inter-monsoon seasons, peaking in the months December-January and May-June. However, Shannon-Wiener index, evenness and family richness showed significant differences among stations and months (p < 0.05).
    Matched MeSH terms: Fishes/growth & development*
  7. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Fishes/growth & development*
  8. Abdul Razak S, Scribner KT
    Appl Environ Microbiol, 2020 05 05;86(10).
    PMID: 32169941 DOI: 10.1128/AEM.02662-19
    Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
    Matched MeSH terms: Fishes/growth & development
  9. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Fishes/growth & development*
  10. Ismail NAH, Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:375-388.
    PMID: 28892772 DOI: 10.1016/j.chemosphere.2017.08.150
    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns.
    Matched MeSH terms: Fishes/growth & development
  11. Ishak SD, Kamarudin MS, Ramezani-Fard E, Saad CR, Yusof YA
    J Environ Biol, 2016 07;37(4 Spec No):755-64.
    PMID: 28779735
    We investigated the effects of four iso-nitrogenous (40% crude protein) and iso-caloric (17.6 kJ g(-1)) diets with different dietary carbohydrate levels (15%, 20%, 25% and 30%) on the growth performance, feed utilization efficiency, body composition and liver histology of Malaysian mahseer (Tor tambroides) fingerlings in a 10-week feeding trial. Fish (initial weight of 0.8?0.1 g; initial total length 4.2?0.1 cm) were fed twice daily at 4% body mass. Dietary carbohydrate level had significant effects (P<0.05) on weight gain, SGR (specific growth rate), FCR (feed conversion rate), PER (protein efficiency rate), survival percentage and all nutrient retention values (PRV, LRV, CRV, ERV). Protein, carbohydrate and gross energy composition of the fish body were also significantly differed (P<0.05) among treatments. Liver histology showed mild hepatic steatosis and hypertrophy for fishes receiving a higher dietary carbohydrate inclusion. In general, treatments with 20% and 25% dietary carbohydrate levels produced better growth results compared to the rest of the treatments. Using a second-order polynomial regression analysis model, the optimal dietary carbohydrate level of 23.4% was estimated for mahseer fingerlings. ?
    Matched MeSH terms: Fishes/growth & development*
  12. Naylor RL, Kishore A, Sumaila UR, Issifu I, Hunter BP, Belton B, et al.
    Nat Commun, 2021 Sep 15;12(1):5413.
    PMID: 34526495 DOI: 10.1038/s41467-021-25516-4
    Numerous studies have focused on the need to expand production of 'blue foods', defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.
    Matched MeSH terms: Fishes/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links