Displaying publications 1 - 20 of 270 in total

Abstract:
Sort:
  1. Ng CKC, Lim TY, Ahmad AB, Khaironizam MZ
    Zootaxa, 2019 Mar 18;4567(3):zootaxa.4567.3.5.
    PMID: 31715885 DOI: 10.11646/zootaxa.4567.3.5
    This study investigates the published literature and incorporates our field data from 1997 to September 2018 to generate an inventory report of primary freshwater fishes for Perak State in Malaysia. We critically examined and enumerated 186 species from 2 classes, 16 orders, 43 families and 114 genera in 57 localities. A total of 173 fish species (91.4%) are native to Perak and 17 species (8.6%) are non-native. The provisional checklist presented herein is conservative and excludes doubtful inventory records that lack synthesis and traceability. We encountered seven taxonomic discrepancies and we also could not confidently identify eight species. These are explicitly discussed to inform future workers.
    Matched MeSH terms: Fresh Water*
  2. Hai T, Ali MA, Alizadeh A, Almojil SF, Almohana AI, Alali AF
    Chemosphere, 2023 Apr;319:137847.
    PMID: 36657576 DOI: 10.1016/j.chemosphere.2023.137847
    Renewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO2 emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO2 (SCO2) cycle. In this study, two methods for using biomass are considered: the first is using synthesis gas generated by the gasifier, and the second is utilizing a digester to generate biogas. A comprehensive parametric study is performed on the designed energy unit to assess the influence of compressor pressure ratio, Gas turbine inlet temperature, supercritical CO2 cycle pressure ratio, and the number of effects of multi-effect distillation on the system performance. Furthermore, the exergy study revealed that the exergy destruction in the digestion unit was 11,337 kW, which was greater than the exergy destruction in the gasification unit, which was 9629. Finally, when compared to the gasifier, the amount of exergy efficiency, net output power, and freshwater production in the digester was greater.
    Matched MeSH terms: Fresh Water*
  3. Ghazali SZ, Lavoué S, Sukmono T, Habib A, Tan MP, Nor SAM
    Mol Phylogenet Evol, 2023 Sep;186:107832.
    PMID: 37263456 DOI: 10.1016/j.ympev.2023.107832
    We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
    Matched MeSH terms: Fresh Water*
  4. Wu WY, Lo MH, Wada Y, Famiglietti JS, Reager JT, Yeh PJ, et al.
    Nat Commun, 2020 07 24;11(1):3710.
    PMID: 32709871 DOI: 10.1038/s41467-020-17581-y
    Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21st century under the business-as-usual scenario (RCP8.5). Results show that the climate-driven impacts on GWS changes do not necessarily reflect the long-term trend in precipitation; instead, the trend may result from enhancement of evapotranspiration, and reduction in snowmelt, which collectively lead to divergent responses of GWS changes across different aquifers. Finally, we compare the climate-driven and anthropogenic pumping impacts. The reduction in GWS is mainly due to the combined impacts of over-pumping and climate effects; however, the contribution of pumping could easily far exceed the natural replenishment.
    Matched MeSH terms: Fresh Water
  5. Izzati Adilah Azmir, Abdullah Samat
    Fishes from five streams in Gunung Machinchang and six streams in Gunung Raya areas of Pulau Langkawi were surveyed with the aim to investigate their diversity and distribution. Fish samples were collected from 23rd to 29th November 2007. Samplings took place along the 50 m reach of each of the site using an electrofisher and scoop nets. A total of 619 individuals of fish comprising 27 species and 14 families were recorded. Sixty-six percent from the taxa listed were of the cyprinids and Puntius binotatus was the most abundant species. Carassius auratus auratus was recorded for the first time in Pulau Langkawi. Streams of the Gunung Machinchang area were dominated by secondary freshwater fish species, but in the Gunung Raya area the streams were dominated by primary freshwater fish species. The highest diversity of fish was recorded for Sg. Kubang Badak with Simpson Index Ds = 0.838 and the lowest was for Sg. Perangin with Ds = 0.450. The highest evenness index of fish species was detected for Sg. Temurun with Es = 0.684 and the lowest was for Sg. Perangin with Es = 0.299. Species overlapping between streams of the two areas was 9.6%.
    Matched MeSH terms: Fresh Water
  6. Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, et al.
    Chemosphere, 2023 Jun;325:138367.
    PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367
    The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
    Matched MeSH terms: Fresh Water
  7. Tan ZW, Lheknim V, Ng PKL
    Zootaxa, 2023 Oct 30;5360(4):531-544.
    PMID: 38220598 DOI: 10.11646/zootaxa.5360.4.4
    A new species of freshwater crab is described from southern Thailand, near the border with Peninsular Malaysia. Species of Stoliczia are characterised by their relatively flat carapace, a third maxilliped exopod that possesses no or a very short flagellum, and a conical male gonopod terminal segment that lacks or only has a very low dorsal fold. Stoliczia setoiyenica, new species, most closely resembles S. perlensis and S. kedahensis from northern Peninsula Malaysia but can be easily distinguished from congeners by differences in carapace and male gonopod morphology. Comparisons to the two known Thai Stoliczia species, S. panhai and S. ekavibhathai, are also provided for completeness.
    Matched MeSH terms: Fresh Water
  8. Cook S, Peacock M, Evans CD, Page SE, Whelan MJ, Gauci V, et al.
    Water Res, 2017 05 15;115:229-235.
    PMID: 28284089 DOI: 10.1016/j.watres.2017.02.059
    UV-visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV-visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities.
    Matched MeSH terms: Fresh Water/chemistry
  9. Khatoon H, Kok Leong L, Abdu Rahman N, Mian S, Begum H, Banerjee S, et al.
    Bioresour Technol, 2018 Feb;249:652-658.
    PMID: 29091850 DOI: 10.1016/j.biortech.2017.10.052
    The aim of this study was to determine the effect of different light sources and media (wastewater and BBM) on the growth of Pseudanabaena mucicola and its phycobiliprotein production. Results showed that P. mucicola grown in white light using wastewater as medium attributed higher biomass (0.55 g L-1) and when extracted with water, also showed significantly higher (P water can be food grade natural blue pigment. Moreover, cyanobacteria grown in wastewater could cut down the production cost of phycobiliprotein.
    Matched MeSH terms: Fresh Water*
  10. Yakubu ML, Yusop Z, Yusof F
    ScientificWorldJournal, 2014;2014:361703.
    PMID: 25126597 DOI: 10.1155/2014/361703
    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.
    Matched MeSH terms: Fresh Water/chemistry*
  11. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Fresh Water/microbiology*
  12. Yunus AJ, Nakagoshi N, Salleh KO
    J Environ Sci (China), 2003 Mar;15(2):249-62.
    PMID: 12765268
    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
    Matched MeSH terms: Fresh Water*
  13. Zakaria MH, Ramaiya SD, Bidin N, Syed NNF, Bujang JS
    PeerJ, 2023;11:e15496.
    PMID: 37456903 DOI: 10.7717/peerj.15496
    BACKGROUND: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea.

    METHODS: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses.

    RESULTS: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.

    Matched MeSH terms: Fresh Water/analysis
  14. Tan WS, Yin WF, Chang CY, Chan KG
    Genome Announc, 2015;3(1).
    PMID: 25700404 DOI: 10.1128/genomeA.01548-14
    Aeromonas hydrophila is a well-known waterborne pathogen that recently was found to infect humans. Here, we report the draft genome of a freshwater isolate from a Malaysian waterfall, A. hydrophila strain M023, which portrays N-acylhomoserine lactone-dependent quorum sensing.
    Matched MeSH terms: Fresh Water
  15. Chan KG, Tan WS
    Genome Announc, 2015;3(1).
    PMID: 25676763 DOI: 10.1128/genomeA.01554-14
    Pectobacterium carotovorum is known to cause serious damage to various major crops worldwide. Here, we report the draft genome of Pectobacterium carotovorum strain M022, a freshwater isolate from a Malaysian waterfall, which has been reported as a plant pathogen and is able to communicate with N-acylhomoserine lactone-mediated quorum sensing.
    Matched MeSH terms: Fresh Water
  16. Chan KG, Yunos NY
    Genome Announc, 2016;4(2).
    PMID: 26941152 DOI: 10.1128/genomeA.00081-16
    Here, we report the draft genome sequence of Chromobacterium piscinae strain ND17. This bacterium was isolated from a fresh water sample in Malaysia and exhibits quorum-sensing activity. This first draft genome of C. piscinae strain ND17 will pave the way to future studies of the quorum-sensing properties of this isolate.
    Matched MeSH terms: Fresh Water
  17. Lee WJ, Goh PS, Lau WJ, Ismail AF, Hilal N
    Membranes (Basel), 2021 Mar 25;11(4).
    PMID: 33806115 DOI: 10.3390/membranes11040235
    Water constitutes one of the basic necessities of life. Around 71% of the Earth is covered by water, however, not all of it is readily available as fresh water for daily consumption. Fresh water scarcity is a chronic issue which poses a threat to all living things on Earth. Seawater, as a natural resource abundantly available all around the world, is a potential water source to fulfil the increasing water demand. Climate-independent seawater desalination has been touted as a crucial alternative to provide fresh water. While the membrane-based desalination process continues to dominate the global desalination market, the currently employed membrane fabrication materials and processes inevitably bring adverse impacts to the environment. This review aims to elucidate and provide a comprehensive outlook of the recent efforts based on greener approaches used for desalination membrane fabrication, which paves the way towards achieving sustainable and eco-friendly processes. Membrane fabrication using green chemistry effectively minimizes the generation of hazardous compounds during membrane preparation. The future trends and recommendations which could potentially be beneficial for researchers in this field are also highlighted.
    Matched MeSH terms: Fresh Water
  18. Knox SH, Bansal S, McNicol G, Schafer K, Sturtevant C, Ueyama M, et al.
    Glob Chang Biol, 2021 08;27(15):3582-3604.
    PMID: 33914985 DOI: 10.1111/gcb.15661
    While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
    Matched MeSH terms: Fresh Water
  19. Gao Y, Shimizu K, Amano C, Wang X, Pham TL, Sugiura N, et al.
    Environ Technol, 2019 Nov;40(27):3593-3601.
    PMID: 29806796 DOI: 10.1080/09593330.2018.1482371
    Microcystin-LR (MC-LR), which is one of the most commonly found microcystins (MCs) in fresh water, has been proved to be a potential tumour promoter and classified as 2B by the International Agency for Research on Cancer. MC-LR decomposition and inhibition of MC-LR production in Microcystis aeruginosa were investigated under electrolysis condition using an electrolysis cell consisting of Ti/Pt electrodes and Nafion membrane. The relationship between the decrease in MC-LR concentration and transcription of MC-LR synthesis gene clusters was determined by performing real-time reverse transcription polymerase chain reaction (RT-qPCR) to monitor changes in the levels of transcription encoding mcyB and mcyD (cDNA to DNA) in M. aeruginosa NIES 1086 under electrolysis condition and three different conditions (i.e. oxygenated, air aerated and unaerated) as controls. Cell density decreased from day 2 under electrolysis than under the three controls. Intracellular MC-LR concentration was approximately 33 fg cell-1 under electrolysis from days 4 to 8, while those in the other conditions ranged in 40-50 fg cell-1. The mcyB transcription continuously decreased from day 2 to nondetectable level in day 6 under electrolysis, while this transcription was stabilised under the three controls. This result suggested that oxidative stress, such as hydroxyl radicals, played an important role in the down-regulation of mcyB and mcyD gene transcription level and the MC-LR concentration and cell density of M. aeruginosa.
    Matched MeSH terms: Fresh Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links