A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design.
In this paper, the singular LR fuzzy linear system is introduced. Such systems are divided into two parts: singular consistent LR fuzzy linear systems and singular inconsistent LR fuzzy linear systems. The capability of the generalized inverses such as Drazin inverse, pseudoinverse, and {1}-inverse in finding minimal solution of singular consistent LR fuzzy linear systems is investigated.
The concepts of fuzzy semi-open and semi-closed sets have been utilised to define four types of semi-separation of fuzzy sets corresponding to the notions of separation, Q-separation, weak separation, strong separation and eight types of semi-connectedness viz SiC, SCi-connectedness for i = 1 ,2 ,3 ,4 corresponding to the notions of O-connectedness, connectedness, Oq-connectedness and ci-connectedness of a fuzzy set. Interrelationship between these notions of semi-connectedness of a fuzzy set and their properties have been discussed.
Konsep set semi-terbuka dan semi-tertutup kabur digunakan untuk mentakrif empat jenis semi-pemisahan bagi set-set kabur sepadan dengan konsep pemisahan, Q-pemisahan, pemisahan lemah, pemisahan kuat dan lapan jenis keberkaitan, iaitu keberkaitan-SiC dan keberkaitan-SCi untuk i=1 ,2 ,3 ,4 sepadan dengan konsep keberkaitan, keberkaitan-Oq dan keberkaitan-Ci bagi set kabur. Hubung kait antara konsep-konsep semi-keberkaitan set kabur ini dan sifat-sifatnya dibincangkan.
Fuzzy Logic Speed Controller (FLSC) has been widely used for motor drive due to its robustness and its non-reliance to real plant parameters. However, it is computationally expensive to be implemented in real-time and prone to the fuzzy rules' selection error which results in the failure of the drive's system. This paper proposes an improved simplified rules method for Fuzzy Logic Speed Controller (FLSC) based on the significant crisp output calculations to address these issues. A systematic procedure for the fuzzy rules reduction process is first described. Then, a comprehensive evaluation of the activated crisp output data is presented to determine the fuzzy dominant rules. Based on the proposed method, the number of rules was significantly reduced by 72%. The simplified FLSC rule is tested on the Induction Motor (IM) drives system in which the real-time implementation was carried out in the dSPACE DS1103 controller environment. The simulation and experimental results based on the proposed FLSC have proved the workability of the simplified rules without degrading the motor performance.
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model.
In several advanced fields like control engineering, computer science, fuzzy automata, finite state machine, and error correcting codes, the use of fuzzified algebraic structures especially ordered semigroups plays a central role. In this paper, we introduced a new and advanced generalization of fuzzy generalized bi-ideals of ordered semigroups. These new concepts are supported by suitable examples. These new notions are the generalizations of ordinary fuzzy generalized bi-ideals of ordered semigroups. Several fundamental theorems of ordered semigroups are investigated by the properties of these newly defined fuzzy generalized bi-ideals. Further, using level sets, ordinary fuzzy generalized bi-ideals are linked with these newly defined ideals which is the most significant part of this paper.
Sustainable water demand management has become a necessity to the world since the immensely growing population and development have caused water deficit and groundwater depletion. This study aims to overcome water deficit by analyzing water demand at Kenyir Lake, Terengganu, using a fuzzy inference system (FIS). The analysis is widened by comparing FIS with the multiple linear regression (MLR) method. FIS applied as an analysis tool provides good generalization capability for optimum solutions and utilizes human behavior influenced by expert knowledge in water resources management for fuzzy rules specified in the system, whereas MLR can simultaneously adjust and compare several variables as per the needs of the study. The water demand dataset of Kenyir Lake was analyzed using FIS and MLR, resulting in total forecasted water consumptions at Kenyir Lake of 2314.38 m3 and 1358.22 m3, respectively. It is confirmed that both techniques converge close to the actual water consumption of 1249.98 m3. MLR showed the accuracy of the water demand values with smaller forecasted errors to be higher than FIS did. To attain sustainable water demand management, the techniques used can be examined extensively by researchers, educators, and learners by adding more variables, which will provide more anticipated outcomes.
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided.
Clustering refers to reducing selected features involved in determining the clusters. Raw data might come with a lot of features, including unimportant ones. A hybrid similarity measure (discovered in 2014) used in selecting features can be improvised as it might select all the attributes, including insignificant ones. This paper suggests Fuzzy Lambda-Max to be used as a feature selection method since Lambda-Max is normally used in ranking of alternatives. A set of AIDS data is used to measure the performance. Results show that Fuzzy Lambda-Max has the ability to determine criteria weights and ranking the criteria. Hence, feature selection can be done by choosing only the important criteria.
The transformation method (TM) of fuzzy arithmetic is aimed at simulation and analysis of a system. The aim of this paper is to use fuzzy arithmetic based on the TM on a state space of a steam turbine system. The model is then used to identify the degree of influence of each parameter on the system. Simulation and analysis of the system are presented in this paper.
The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
In recent decades, various conventional techniques have been formulated around the world to evaluate the overall water quality (WQ) at particular locations. In the present study, back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and one multilinear regression (MLR) are considered for the prediction of water quality index (WQI) at three stations, namely Nizamuddin, Palla, and Udi (Chambal), across the Yamuna River, India. The nonlinear ensemble technique was proposed using the neural network ensemble (NNE) approach to improve the performance accuracy of the single models. The observed WQ parameters were provided by the Central Pollution Control Board (CPCB) including dissolved oxygen (DO), pH, biological oxygen demand (BOD), ammonia (NH3), temperature (T), and WQI. The performance of the models was evaluated by various statistical indices. The obtained results indicated the feasibility of the developed data intelligence models for predicting the WQI at the three stations with the superior modelling results of the NNE. The results also showed that the minimum values for root mean square (RMS) varied between 0.1213 and 0.4107, 0.003 and 0.0367, and 0.002 and 0.0272 for Nizamuddin, Palla, and Udi (Chambal), respectively. ANFIS-M3, BPNN-M4, and BPNN-M3 improved the performance with regard to an absolute error by 41%, 4%, and 3%, over other models for Nizamuddin, Palla, and Udi (Chambal) stations, respectively. The predictive comparison demonstrated that NNE proved to be effective and can therefore serve as a reliable prediction approach. The inferences of this paper would be of interest to policymakers in terms of WQ for establishing sustainable management strategies of water resources.
Multicriteria decision making (MCDM) is one of the methods that popularly has been used in solving personnel selection problem. Alternatives, criteria, and weights are some of the fundamental aspects in MCDM that need to be defined clearly in order to achieve a good result. Apart from these aspects, fuzzy data has to take into consideration that it may arise from unobtainable and incomplete information. In this paper, we propose a new approach for personnel selection problem. The proposed approach is based on Hamming distance method with subjective and objective weights (HDMSOW's). In case of vagueness situation, fuzzy set theory is then incorporated onto the HDMSOW's. To determine the objective weight for each attribute, the fuzzy Shannon's entropy is considered. While for the subjective weight, it is aggregated into a comparable scale. A numerical example is presented to illustrate the HDMSOW's.
Decision-Making Trial and Evaluation Laboratory (DEMATEL) methodology has been proposed to solve complex and intertwined problem groups in many situations such as developing the capabilities, complex group decision making, security problems, marketing approaches, global managers, and control systems. DEMATEL is able to realize casual relationships by dividing important issues into cause and effect group as well as making it possible to visualize the casual relationships of subcriteria and systems in the course of casual diagram that it may demonstrate communication network or a little control relationships between individuals. Despite of its ability to visualize cause and effect inside a network, the original DEMATEL has not been able to find the cause and effect group between different networks. Therefore, the aim of this study is proposing the expanded DEMATEL to cover this deficiency by new formulations to determine cause and effect factors between separate networks that have bidirectional direct impact on each other. At the end, the feasibility of new extra formulations is validated by case study in three numerical examples of green supply chain networks for an automotive company.
The motivation behind this paper is to seek alternative techniques to achieve a near optimal controller for non-linear systems without solving the analytical problem. In classical optimal control systems, the system states and optimization co-state parameters generate a two-point boundary value problem (TPBVP) using Pontryagin's minimum principle (PMP). The paper contributes a new fuzzy time-optimal controller to the existing fuzzy controllers which has two regular inputs and one bang-bang output. The proposed controller closely approximates the output of the classical time-optimal controller. Further, input membership function are tuned on-line to improve the time-optimal output. The new controller exhibits optimal behaviour for second order non-linear systems. The rules are selected to satisfy the stability and optimality conditions of the new fuzzy time-optimal controller. The paper describes a systematic procedure to design the controller and how to achieve the desired result. To benchmark the new controller performance, a sliding mode controller is used for guidance and comparison purpose. Simulation of three non-linear examples shows promising results. The work described here is expected to incite researcher's interest in fuzzy time-optimal controller design.
This study presents the development of a hybrid system consisting of an ensemble of Extended Kalman Filter (EKF) based Multi Layer Perceptron Network (MLPN) and a one-pass learning Fuzzy Inference System using Look-up Table Scheme for the recognition of electrocardiogram (ECG) signals. This system can distinguish various types of abnormal ECG signals such as Ventricular Premature Cycle (VPC), T wave inversion (TINV), ST segment depression (STDP), and Supraventricular Tachycardia (SVT) from normal sinus rhythm (NSR) ECG signal.
The conveyor system plays a vital role in improving the performance of flexible manufacturing cells (FMCs). The conveyor selection problem involves the evaluation of a set of potential alternatives based on qualitative and quantitative criteria. This paper presents an integrated multi-criteria decision making (MCDM) model of a fuzzy AHP (analytic hierarchy process) and fuzzy ARAS (additive ratio assessment) for conveyor evaluation and selection. In this model, linguistic terms represented as triangular fuzzy numbers are used to quantify experts' uncertain assessments of alternatives with respect to the criteria. The fuzzy set is then integrated into the AHP to determine the weights of the criteria. Finally, a fuzzy ARAS is used to calculate the weights of the alternatives. To demonstrate the effectiveness of the proposed model, a case study is performed of a practical example, and the results obtained demonstrate practical potential for the implementation of FMCs.
A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.
In this paper, we extend our previous work on the Enhanced Fuzzy Min-Max (EFMM) neural network by introducing a new hyperbox selection rule and a pruning strategy to reduce network complexity and improve classification performance. Specifically, a new k-nearest hyperbox expansion rule (for selection of a new winning hyperbox) is first introduced to reduce the network complexity by avoiding the creation of too many small hyperboxes within the vicinity of the winning hyperbox. A pruning strategy is then deployed to further reduce the network complexity in the presence of noisy data. The effectiveness of the proposed network is evaluated using a number of benchmark data sets. The results compare favorably with those from other related models. The findings indicate that the newly introduced hyperbox winner selection rule coupled with the pruning strategy are useful for undertaking pattern classification problems.
There is an increasing concern about the quality and quality assessment procedures of seafood. In the present study, a model to assess fish quality based on biogenic amine contents using fuzzy logic model (FLM) is proposed. The fish used was sardine (Sardinella sp.) where the production of eight biogenic amines was monitored over fifteen days of storage at 0, 3 and 10°C. Based on the results, histamine, putrescine and cadaverine were selected as input variables and twelve quality grades were considered for quality of fish as output variables for the FLM. Input data were processed by rules established in the model and were then defuzzified according to defined output variables. Finally, the quality of fish was evaluated using the designed model and Pearson correlation between storage times with quality of fish showed r=0.97, 0.95 and 1 for fish stored at 0, 3 and 10°C, respectively.