Displaying all 20 publications

Abstract:
Sort:
  1. Turner BC
    Fungal Genet. Biol., 2003 Jul;39(2):142-50.
    PMID: 12781673
    Two new loci found in one strain of Neurospora crassa (P2604) collected in Malaya are related to the meiotic drive system Spore killer Sk-2. Sk-2 was found in Neurospora intermedia and introgressed into N. crassa. P2604 showed high resistance to killing when crossed to Sk-2. This resistance was found to be linked to, but not allelic to, resistance locus r(Sk-2) on LGIIIL. Analysis showed that the high resistance phenotype of P2604 requires resistance alleles at two different loci on LGIIIR. Strains carrying a resistance allele at only the proximal or the distal locus, respectively, were obtained and intercrossed. Highly resistant strains were obtained by rejoining the two genes. The proximal locus alone confers a low level of resistance. This locus was named pr(Sk-2) for partial resistance to Sk-2. The distal locus was named mod(pr) because its only known phenotype is to modify pr(Sk-2).
    Matched MeSH terms: Genes, Fungal*
  2. Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, et al.
    Proc Natl Acad Sci U S A, 2014 Dec 23;111(51):18138-43.
    PMID: 25425666 DOI: 10.1073/pnas.1417304111
    The Pictet-Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet-Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-L-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form "unnatural" natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine.
    Matched MeSH terms: Genes, Fungal
  3. Mohd-Assaad N, McDonald BA, Croll D
    Genome Biol Evol, 2018 Apr 01;10(5):1315-1332.
    PMID: 29722810 DOI: 10.1093/gbe/evy087
    Coevolution between hosts and pathogens generates strong selection pressures to maintain resistance and infectivity, respectively. Genomes of plant pathogens often encode major effect loci for the ability to successfully infect specific host genotypes. Hence, spatial heterogeneity in host genotypes coupled with abiotic factors could lead to locally adapted pathogen populations. However, the genetic basis of local adaptation is poorly understood. Rhynchosporium commune, the pathogen causing barley scald disease, interacts at least partially in a gene-for-gene manner with its host. We analyzed global field populations of 125 R. commune isolates to identify candidate genes for local adaptation. Whole genome sequencing data showed that the pathogen is subdivided into three genetic clusters associated with distinct geographic and climatic regions. Using haplotype-based selection scans applied independently to each genetic cluster, we found strong evidence for selective sweeps throughout the genome. Comparisons of loci under selection among clusters revealed little overlap, suggesting that ecological differences associated with each cluster led to variable selection regimes. The strongest signals of selection were found predominantly in the two clusters composed of isolates from Central Europe and Ethiopia. The strongest selective sweep regions encoded protein functions related to biotic and abiotic stress responses. Selective sweep regions were enriched in genes encoding functions in cellular localization, protein transport activity, and DNA damage responses. In contrast to the prevailing view that a small number of gene-for-gene interactions govern plant pathogen evolution, our analyses suggest that the evolutionary trajectory is largely determined by spatially heterogeneous biotic and abiotic selection pressures.
    Matched MeSH terms: Genes, Fungal/genetics*; Genes, Fungal/physiology
  4. Kuan CS, Yew SM, Chan CL, Toh YF, Lee KW, Cheong WH, et al.
    Database (Oxford), 2016;2016.
    PMID: 26980516 DOI: 10.1093/database/baw008
    Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my.
    Matched MeSH terms: Genes, Fungal
  5. Yap HY, Chooi YH, Firdaus-Raih M, Fung SY, Ng ST, Tan CS, et al.
    BMC Genomics, 2014;15:635.
    PMID: 25073817 DOI: 10.1186/1471-2164-15-635
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.
    Matched MeSH terms: Genes, Fungal/genetics
  6. Kasim S, Deris S, Othman RM
    Comput Biol Med, 2013 Sep;43(9):1120-33.
    PMID: 23930805 DOI: 10.1016/j.compbiomed.2013.05.011
    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted.
    Matched MeSH terms: Genes, Fungal/physiology*
  7. Chutrakul C, Peberdy JF
    FEMS Microbiol Lett, 2005 Nov 15;252(2):257-65.
    PMID: 16214297
    Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.
    Matched MeSH terms: Genes, Fungal*
  8. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
    Matched MeSH terms: Genes, Fungal*
  9. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, et al.
    Eukaryot Cell, 2012 Jun;11(6):828.
    PMID: 22645233 DOI: 10.1128/EC.00133-12
    Pleosporales is the largest order in the fungal class Dothideomycetes. We report the 36,814,818-bp draft genome sequence and gene annotation of UM1110, a Pleosporales isolate associated with unclassified genera that is potentially a new fungal species. Analysis of the genome sequence led to the finding of genes associated with fungal adhesive proteins, secreted proteases, allergens, and pseudohyphal development.
    Matched MeSH terms: Genes, Fungal/genetics
  10. Siddiquee S, Yusof NA, Salleh AB, Abu Bakar F, Heng LY
    Bioelectrochemistry, 2010 Aug;79(1):31-6.
    PMID: 19945357 DOI: 10.1016/j.bioelechem.2009.10.004
    A new electrochemical biosensor is described for voltammetric detection of gene sequence related to Trichoderma harzianum. The sensor involves immobilization of a 20 base single-stranded probe (ssDNA), which is complementary to a specific gene sequence related to T. harzianum on a gold electrode through specific adsorption. The DNA probe was used to determine the amount of target gene in solution using methylene blue (MB) as the electrochemical indicator. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the electrode. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE and the probe-modified AuE which localized to the affinity of MB. Control experiments with the non-complementary oligonucleotides were performed to assess whether the DNA biosensor responds selectively, via hybridization, to the target. DNA biosensor also able to detect microorganism at the species levels without nucleic acid amplification. The redox current was linearly related to the concentration of target oligonucleotide DNA, ranged from 1-20 ppm. Numerous factors, affecting the probe immobilization, target hybridization and indicator binding reactions are optimized to maximize the sensitivity and reduce the assay time.
    Matched MeSH terms: Genes, Fungal/genetics*
  11. Toh YF, Yew SM, Chan CL, Na SL, Lee KW, Hoh CC, et al.
    PLoS One, 2016;11(9):e0162095.
    PMID: 27626635 DOI: 10.1371/journal.pone.0162095
    Pyrenochaeta unguis-hominis is a rare human pathogen that causes infection in human skin and nail. P. unguis-hominis has received little attention, and thus, the basic biology and pathogenicity of this fungus is not fully understood. In this study, we performed in-depth analysis of the P. unguis-hominis UM 256 genome that was isolated from the skin scraping of a dermatitis patient. The isolate was identified to species level using a comprehensive multilocus phylogenetic analysis of the genus Pyrenochaeta. The assembled UM 256 genome has a size of 35.5 Mb and encodes 12,545 putative genes, and 0.34% of the assembled genome is predicted transposable elements. Its genomic features propose that the fungus is a heterothallic fungus that encodes a wide array of plant cell wall degrading enzymes, peptidases, and secondary metabolite biosynthetic enzymes. Antifungal drug resistance genes including MDR, CDR, and ERG11/CYP51 were identified in P. unguis-hominis UM 256, which may confer resistance to this fungus. The genome analysis of P. unguis-hominis provides an insight into molecular and genetic basis of the fungal lifestyles, understanding the unrevealed biology of antifungal resistance in this fungus.
    Matched MeSH terms: Genes, Fungal/genetics
  12. Ong SM, Voo LY, Lai NS, Stark MJ, Ho CC
    J Appl Microbiol, 2007 Mar;102(3):680-92.
    PMID: 17309617
    To identify novel microbial inhibitors of protein phosphatase 1 (PP1).
    Matched MeSH terms: Genes, Fungal/genetics
  13. Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, et al.
    BMC Genomics, 2015 Nov 18;16:966.
    PMID: 26581579 DOI: 10.1186/s12864-015-2200-2
    BACKGROUND: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species.

    RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.

    CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

    Matched MeSH terms: Genes, Fungal/genetics
  14. Samadlouie HR, Hamidi-Esfahani Z, Alavi SM, Varastegani B
    Braz J Microbiol, 2014;45(2):439-45.
    PMID: 25242926
    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.
    Matched MeSH terms: Genes, Fungal
  15. Rosnina AG, Tan YS, Abdullah N, Vikineswary S
    World J Microbiol Biotechnol, 2016 Feb;32(2):18.
    PMID: 26745978 DOI: 10.1007/s11274-015-1959-2
    Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species.
    Matched MeSH terms: Genes, Fungal
  16. Mohd-Assaad N, McDonald BA, Croll D
    Mol Ecol, 2016 Dec;25(24):6124-6142.
    PMID: 27859799 DOI: 10.1111/mec.13916
    Evolution of fungicide resistance is a major threat to food production in agricultural ecosystems. Fungal pathogens rapidly evolved resistance to all classes of fungicides applied to the field. Resistance to the commonly used azole fungicides is thought to be driven mainly by mutations in a gene (CYP51) encoding a protein of the ergosterol biosynthesis pathway. However, some fungi gained azole resistance independently of CYP51 mutations and the mechanisms leading to CYP51-independent resistance are poorly understood. We used whole-genome sequencing and genome-wide association studies (GWAS) to perform an unbiased screen of azole resistance loci in Rhynchosporium commune, the causal agent of the barley scald disease. We assayed cyproconazole resistance in 120 isolates collected from nine populations worldwide. We found that mutations in highly conserved genes encoding the vacuolar cation channel YVC1, a transcription activator, and a saccharopine dehydrogenase made significant contributions to fungicide resistance. These three genes were not previously known to confer resistance in plant pathogens. However, YVC1 is involved in a conserved stress response pathway known to respond to azoles in human pathogenic fungi. We also performed GWAS to identify genetic polymorphism linked to fungal growth rates. We found that loci conferring increased fungicide resistance were negatively impacting growth rates, suggesting that fungicide resistance evolution imposed costs. Analyses of population structure showed that resistance mutations were likely introduced into local populations through gene flow. Multilocus resistance evolution to fungicides shows how pathogen populations can evolve a complex genetic architecture for an important phenotypic trait within a short time span.
    Matched MeSH terms: Genes, Fungal
  17. Omar NH, Mohd M, Mohamed Nor NMI, Zakaria L
    Microb Pathog, 2018 Jan;114:362-368.
    PMID: 29233777 DOI: 10.1016/j.micpath.2017.12.026
    Leaf spot diseases are mainly caused by fungi including Fusarium. In the present study several species of Fusarium were isolated from the leaf spot lesion of mango (Mangifera indica L.) Based on morphological characteristics, TEF-1α sequences and phylogenetic analysis, five species were identified as F. proliferatum, F. semitectum, F. mangiferae, F. solani and F. chlamydosporum. Pathogenicity test indicated that representative isolates of F. proliferatum, F. semitectum and F. chlamydosporum were pathogenic on mango leaves causing leaf spot with low to moderate virulence. Nevertheless, abundance of spots on the leaf can disrupt photosynthesis which in turn reduced growth, and lead to susceptibility to infection by opportunistic pathogens due to weakening of the plant. Fusarium solani and F. mangiferae were non-pathogenic and it is possible that both species are saprophyte which associated with nutrient availability on the surface of the leaf through decaying leave tissues. The occurrence of Fusarium spp. on the leaf spot lesion and the effect from the disease needs to be considered when developing disease management method of mango cultivation as numerous spot on the leaves could effect the photosynthesis process and finally giving low yield and less quality of mango.
    Matched MeSH terms: Genes, Fungal
  18. Yong VC, Ong KW, Sidik SM, Rosli R, Chong PP
    J Microbiol Methods, 2009 Nov;79(2):242-5.
    PMID: 19737582 DOI: 10.1016/j.mimet.2009.08.019
    In situ Reverse Transcriptase PCR (in situ RT-PCR) can amplify mRNA and localize gene expression in cells. However, this method is not feasible in fungi as the thick fungal cell wall constitutes a barrier to this procedure. We developed a two step in situ RT-PCR procedure which enabled the detection and localization of Candida tropicalis mRNA expression in formalin-fixed, paraffin-embedded (FFPE) mouse kidney sections. This in situ hybridization study revealed the first direct evidence for deposition of Candida tropicalis secreted aspartic proteinase 2 (CtSAP2) in the tip of pseudohyphae and its involvement in acute systemic candidiasis. We conclude that in situ RT-PCR can be successfully applied to FFPE tissues and will offer new perspectives in studying gene expression in Candida species.
    Matched MeSH terms: Genes, Fungal
  19. Yew SM, Chan CL, Kuan CS, Toh YF, Ngeow YF, Na SL, et al.
    BMC Genomics, 2016 Feb 03;17:91.
    PMID: 26842951 DOI: 10.1186/s12864-016-2409-8
    Ochroconis mirabilis, a recently introduced water-borne dematiaceous fungus, is occasionally isolated from human skin lesions and nails. We identified an isolate of O. mirabilis from a skin scraping with morphological and molecular studies. Its genome was then sequenced and analysed for genetic features related to classification and biological characteristics.
    Matched MeSH terms: Genes, Fungal
  20. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Genes, Fungal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links