Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chong ZX, Ho WY, Yeap SK
    Biochem Pharmacol, 2023 Apr;210:115466.
    PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466
    Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/genetics
  2. Wong SK, Mohamad NV, Jayusman PA, Ibrahim N'
    Int J Mol Sci, 2023 Aug 04;24(15).
    PMID: 37569816 DOI: 10.3390/ijms241512441
    A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(β-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/β-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3β), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3β may be a drug target in the development of novel anabolic agents and the potential use of GSK3β inhibitors to treat bone-related disorders.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/metabolism
  3. Kumar S, Fazil MHUT, Ahmad K, Tripathy M, Rajapakse JC, Verma NK
    Methods Mol Biol, 2019;1930:149-156.
    PMID: 30610609 DOI: 10.1007/978-1-4939-9036-8_18
    Analysis of protein-protein interactions is important for better understanding of molecular mechanisms involved in immune regulation and has potential for elaborating avenues for drug discovery targeting T-cell motility. Currently, only a small fraction of protein-protein interactions have been characterized in T-lymphocytes although there are several detection methods available. In this regard, computational approaches garner importance, with the continued explosion of genomic and proteomic data, for handling protein modeling and protein-protein interactions in large scale. Here, we describe a computational method to identify protein-protein interactions based on in silico protein design.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/metabolism; Glycogen Synthase Kinase 3 beta/chemistry
  4. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al.
    Pharmacol Res, 2015 Jul;97:16-26.
    PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010
    Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors; Glycogen Synthase Kinase 3/drug effects; Glycogen Synthase Kinase 3/physiology*
  5. Dahari DE, Salleh RM, Mahmud F, Chin LP, Embi N, Sidek HM
    Trop Life Sci Res, 2016 Aug;27(2):53-71.
    PMID: 27688851 MyJurnal DOI: 10.21315/tlsr2016.27.2.5
    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3β.
    Matched MeSH terms: Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta
  6. Zhan Y, Wen Y, Zheng F, Du LJ, Chen TY, Shen XL, et al.
    Mol Neurobiol, 2024 Mar;61(3):1543-1561.
    PMID: 37728849 DOI: 10.1007/s12035-023-03600-8
    Enteric glial cells (EGCs) are the major component of the enteric nervous system and affect the pathophysiological process of intestinal motility dysfunction. MicroRNAs (miRNAs) play an important role in regulating gastrointestinal homeostasis. However, the mechanism of miRNA-mediated regulation of EGCs in intestinal dysmotility remains unclear. In this study, we investigated the effect of EGC apoptosis on intestinal dysmotility, and the effect of miR-26b-3p on EGC proliferation and apoptosis in vivo and in vitro. A loperamide hydrochloride (Lop)-induced constipated mouse model and an in vitro culture system of rat EGCs were established. The transcriptome was used to predict the differentially expressed gene miR-26b-3p and the target gene Frizzled 10 (FZD10), and their targeting binding relationship was verified by luciferase. EGCs were transfected with miR-26b-3p mimic or antagomir, and the FZD10 expression was down-regulated by siRNA. Immunofluorescence and flow cytometry were used to detect EGC apoptosis. MiR-26b-3p and FZD10 expressions were examined using quantitative real-time PCR (qRT-PCR). The CCK-8 assay was used to detect EGC proliferation. The protein levels were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). The results showed that miR-26b-3p was up-regulated in the Lop group, whereas FZD10 was down-regulated, and EGC apoptosis was increased in the colon of intestinal dysmotility mice. FZD10 down-regulation and miR-26b-3p mimic significantly increased glycogen synthase kinase-3β phosphorylation (p-GSK3β) levels, decreased β-catenin expression, and promoted EGC apoptosis. MiR-26b-3p antagomir alleviated intestinal dysmotility, promoted EGC increased activity of EGCs, and reduced EGC apoptosis in vivo. In conclusion, this study indicated that miR-26b-3p promotes intestinal motility disorders by targeting FZD10 to block GSK3β/β-catenin signaling and induces apoptosis in EGCs. Our results provide a new research target for the treatment and intervention of intestinal dysmotility.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/metabolism
  7. Manoharan SD, Abdul Hamid H, Md Hashim NF, Cheema MS, Chiroma SM, Mustapha M, et al.
    Brain Res, 2024 Apr 15;1829:148793.
    PMID: 38309553 DOI: 10.1016/j.brainres.2024.148793
    Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3β) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3β activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3β with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3β inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3β levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3β as therapeutic targets of natural compounds are highlighted in this review.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/metabolism
  8. Maniam P, Nurul Aiezzah Z, Mohamed R, Embi N, Hasidah MS
    Trop Biomed, 2015 Mar;32(1):36-48.
    PMID: 25801253
    Increased susceptibility of diabetics to melioidosis, a disease caused by the Burkholderia pseudomallei bacterium is believed to be attributed to dysfunction of the innate immune system. However, the underlying mechanism of the innate susceptibility is not well-understood. Glycogen synthase kinase-3β (GSK3β) plays an important role in the innate inflammatory response caused by bacterial pathogens. The present study was conducted to investigate the effects of GSK3β inhibition by LiCl on levels of pro- and anti-inflammatory cytokines; and the activity of transcription factor NF-κB in B. pseudomallei-infected peripheral blood mononuclear cells (PBMC) derived from diabetic-induced and normal Sprague Dawley rats. In addition, the effects of LiCl on intracellular bacterial counts were also investigated. Infection of PBMC from diabetic and normal rats with B. pseudomallei resulted in elevated levels of cytokines (TNF-α, IL-12 and IL-10) and phosphorylation of NF-κB in both cell types. Intracellular bacterial counts decreased with time in both cell types during infection. However bacterial clearance was less prominent in diabetic PBMC. Burkholderia pseudomallei infection also caused inactivation (Ser9 phosphorylation) of GSK3β in normal PBMC, an effect absent in infected diabetic PBMC. Inhibition of GSK3β by LiCl lowered the levels of pro-inflammatory cytokines (TNF-α and IL-12) in both normal and diabetic PBMC. Similarly, phosphorylated NF- κB (pNF-κB) levels in both cell types were decreased with LiCl treatment. Also, LiCl was able to significantly decrease the intracellular bacterial count in normal as well as diabetic PBMC. Interestingly, the levels of anti-inflammatory cytokine IL-10 in both normal and diabetic PBMC were further elevated with GSK3β inhibition. More importantly, GSK3β in infected diabetic PBMC was inactivated as in their non-diabetic counterparts upon LiCl treatment. Taken together, our results suggest that inhibition of dysregulated GSK3β in diabetic PBMC resulted in the inactivation of NF-κB and modulation of inflammatory cytokine levels. This is evidence that dysregulation of GSK3β is a contributing factor in the molecular basis of innate dysfunction and susceptibility of diabetic host to melioidosis infection.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors; Glycogen Synthase Kinase 3/metabolism*
  9. Tan BL, Norhaizan ME
    Biomed Pharmacother, 2019 Feb;110:748-757.
    PMID: 30554113 DOI: 10.1016/j.biopha.2018.12.027
    Manilkara zapota (L.) P. Royen (Family: Sapotaceae), commonly called as sapodilla, has been applied as traditional folk medicine for diarrhea and pulmonary infections. Conventional therapy in colorectal cancer is not likely effective due to undesirable outcomes. The anti-colon cancer properties of Manilkara zapota leaf water extract have yet to be investigated thus far. Therefore, our present study aimed to evaluate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf water extract against human colorectal cancer (HT-29) cells. The cytotoxicity of Manilkara zapota leaf water extract was screened in different cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) analyses. The morphological changes in HT-29 cell lines after exposure to Manilkara zapota leaf water extract were viewed under fluorescence and inverted light microscope. The apoptotic cell was measured by Annexin V-propidium iodide staining. The caspase-3 and -8 activities were assessed by colorimetric assay. Overall analyses revealed that treatment with Manilkara zapota leaf water extract for 72 h can inhibit the viability of HT-29 cells. Incubation with Manilkara zapota leaf water extract for 24, 48, and 72 h significantly increased (p < 0.05) the total apoptotic cells compared to the control. Treatment with 21, 42, and 84 μg/mL of Manilkara zapota leaf water extract for 72 h triggered both caspase-3 and -8 activities in a concentration-dependent pattern. We also found that the catalase level in the two treatment groups (21 and 42 μg/mL) was significantly elevated after 24 h incubation. Incubation with Manilkara zapota leaf water extract for 72 h triggered the transcriptional elevation of the adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), AXIN1, and casein kinase 1 (CK1). The β-catenin mRNA levels were reduced accordingly when the concentration of the Manilkara zapota leaf water extract was increased. Our results suggested that Manilkara zapota leaf water extract offer great potential against colorectal cancer through modulation of Wnt/β-catenin signaling pathway, caspase-dependent pathway, and antioxidant enzyme.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta
  10. Norlia B., Norwati M., Norwati A., Mohd Rosli H., Norihan M. S.
    MyJurnal
    This study was part of the larger studies to isolate and characterize gene related to flowering in teak. This study isolated differentially expressed genes of teak flowering tissues. One of the genes encodes plant protein kinases highly homologous to the AtSK-II of Arabidopsis GSK3/SHAGGY subfamily. The gene was named as Tectona grandis SHAGGY kinase (Tg-SK). The protein sequence of this gene contained the characteristic catalytic domain of GSK-3/SHAGGY protein kinase. The gene also shows the same genomic organization of 11 introns and 12 exons. Although the size of the introns varies, the positions of exon/intron boundaries are very similar to AtSK-II. The discovery of this gene in teak, which is a forest tree species, supports the hypothesis, which suggested the gene is found in all eukaryotes.
    Matched MeSH terms: Glycogen Synthase Kinase 3
  11. Ali AH, Sudi S, Basir R, Embi N, Sidek HM
    J Med Food, 2017 Feb;20(2):152-161.
    PMID: 28146408 DOI: 10.1089/jmf.2016.3813
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors*; Glycogen Synthase Kinase 3 beta/genetics; Glycogen Synthase Kinase 3 beta/metabolism
  12. Aizuddin NNF, Ganesan N, Ng WC, Ali AH, Ibrahim I, Basir R, et al.
    Trop Biomed, 2020 Dec 01;37(4):1105-1116.
    PMID: 33612762 DOI: 10.47665/tb.37.4.1105
    Malaria is a life-threatening disease caused by the Plasmodium sp. parasite. Infection results in heightened pro-inflammatory response which contributes to the pathophysiology of the disease. To mitigate the overwhelming cytokine response, host-directed therapy is a plausible approach. Glycogen synthase kinase-3β (GSK3β), a serine/threonine kinase plays a pivotal role in the regulation of inflammatory response during pathogenic infections. The present study was conducted to investigate the chemo-suppressive and cytokine-modulating effects of insulin administration in malaria-infected mice and the involvement of GSK3β. Intraperitoneal administrations of 0.3 and 0.5 U/kg body weight insulin each for four consecutive days into Plasmodium berghei NK65 (PbN)-infected mice resulted in chemo-suppression exceeding 60% and improved median survival time of infected mice (20.5 days and 19 days respectively compared to 15.5 days for non-treated control). Western analysis revealed that pGSK3β (Ser9) intensity in brain samples from insulin-treated (0.3 and 0.5 U/kg body weight) infected mice each were 0.6 and 2.2 times respectively than that in control. In liver samples, pGSK3β (Ser9) intensity from insulin-treated infected mice were significantly higher (4.8 and 16.1 fold for 0.3 and 0.5 U/kg bw respectively) than that in control. Insulin administration decreased both brain and liver pNF-κB p65 (Ser536) intensities (to 0.8 and 0.6 times for 0.3 U/kg bw insulin; and to 0.2 and 0.1 times for 0.5 U/kg bw insulin respectively compared to control). Insulin treatment (0.5 U/kg bw) also significantly decreased the serum levels of pro-inflammatory cytokines (TNF-α (3.3 times) and IFN-γ (4.9 times)) whilst significantly increasing the levels of anti-inflammatory cytokines (IL-4 (4.9 fold) and IL-10 (2.1 fold)) in PbN-infected mice. Results from this study demonstrated that the cytokinemodulating effects of insulin at least in part involve inhibition of GSK3β and consequent inhibition of the activation of NF-κB p65 suggesting insulin as a potential adjunctive therapeutic for malaria.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors*
  13. Khor TO, Gul YA, Ithnin H, Seow HF
    Cancer Lett, 2004 Jul 16;210(2):139-50.
    PMID: 15183529
    The enhancement of cell proliferation and promotion of cell survival via the inhibition of apoptosis is thought to be the key to the initiation and progression of cancers. The phosphatidylinositol-3 kinase (PI3K)/Akt is an important survival signal pathway that has been shown to be crucial in the regulation of balance between pro-apoptotic and survival (anti-apoptotic) signal. In this study, the expression of phosphorylated Akt at Thr308 and Ser473, BCL-2-antagonist of cell death (BAD) at Ser136 and glycogen synthase kinase-3beta (GSK-3beta) at Ser9 in 47 paraffin-embedded human colorectal carcinoma (CRC) tissues were determined by immunohistochemical staining in order to dissect the alterations in the signal transduction pathways in CRC. Our results showed that there was a significant increase in the expression of these biomolecules in CRC tissues compared to the apparently normal adjacent tissues. The frequency of increased expression in tumor colonic mucosa were as follows: p-Akt1/2/3 (Thr308) = 16/47 (34%); p-Akt1 (Ser473) = 21/47 (44.7%); phospho-BAD (p-BAD) Ser136 = 27/47 (57.4%) and phospho-GSK-3beta (p-GSK-3beta) = 21/47 (44.7%). Analysis of the total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score found that there was a statistically significant relationship with each other. A statistically significant positive linear relationship was found between total p-Akt (Ser473) score and total p-GSK-3beta (Ser9) score as well as with total p-BAD (Ser136) score. On the other hand, total p-Akt1/2/3 (Thr308) scores had a statistically significant positive linear relationship with p-GSK-3beta (Ser9) only. The Akt targets, p-GSK-3beta (Ser9) and p-BAD (Ser136) were positively correlated to each other. There was no significant correlation between clinico-pathological data with total p-Akt1 (Ser473), p-Akt1/2/3 (Thr308), p-GSK-3beta (Ser9) and p-BAD (Ser136) score except for age. The total scores of p-GSK-3beta were found to be higher in patients in the age group of greater than 60. This is the first report of p-Akt1/2/3 (Thr308) and p-BAD (Ser136) expression in primary colorectal tumor tissue. Our data further supports the role of PI3K/Akt signaling pathways in the pathogenesis of CRC and contributes to the identification of target molecules in the signal transduction pathway for cancer therapy.
    Matched MeSH terms: Glycogen Synthase Kinase 3/biosynthesis*; Glycogen Synthase Kinase 3/genetics
  14. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H
    Drug Des Devel Ther, 2014;8:1765-80.
    PMID: 25336920 DOI: 10.2147/DDDT.S67980
    Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Glycogen Synthase Kinase 3/metabolism*; Glycogen Synthase Kinase 3 beta
  15. Ban KC, Singh H, Krishnan R, Seow HF
    Cancer Lett, 2003 Sep 25;199(2):201-8.
    PMID: 12969793
    The aim of this study is to investigate the potential correlation between the expression of phosphorylated glycogen synthase kinase-3beta (phospho-GSK-3beta) and beta-catenin, and the mutations of beta-catenin gene at the consensus GSK-3beta phosphorylation site. The reason for this approach is to gain a better understanding of the molecular mechanisms of hepatocarcinogenesis in Malaysia. The expression of phospho-GSK-3beta and beta-catenin by immunohistochemistry and the mutations of beta-catenin were studied in 23 hepatocellular carcinoma (HCC) and surrounding tissues. Overexpression of phospho-GSK-3beta and beta-catenin was found in 12/23 (52.2%) and 13/23 (56.5%) in HCC tissues, 6/23 (26.1%) and 9/23 (39.1%) in surrounding tissues, respectively. Overexpression of beta-catenin in HCC tissues compared to the surrounding liver tissue was found to be higher in HCC tissues (p=0.015). In addition, we found that the expression of phospho-GSK-3beta was related with the accumulation of beta-catenin in surrounding tissues (p<0.05). The expression of phospho-GSK-3beta and its association with the development of HCC is reported for the first time. In addition, this is the first report from Malaysia which shows that there are no mutations at the GSK-3beta consensus phosphorylation sites on beta-catenin gene in all 23 paired HCC and surrounding tissues. This result differed from HCC in geographical areas with high aflatoxin exposure.
    Matched MeSH terms: Glycogen Synthase Kinase 3/metabolism*
  16. Teo CH, Soga T, Parhar I
    Sci Rep, 2020 08 17;10(1):13876.
    PMID: 32807874 DOI: 10.1038/s41598-020-70710-x
    Neurons synthesizing gonadotropin-inhibitory hormone (GnIH) have been implicated in the control of reproduction, food intake and stress. Serotonin (5-HT) receptors have been shown in GnIH neurons; however, their functional role in the regulation of GnIH neurons remains to be elucidated. In this study, we measured intracellular calcium ion levels following 5-HT treatment to hypothalamic primary cultures of enhanced fluorescent green protein-tagged GnIH (EGFP-GnIH) neurons from Wistar rat pups of mixed sex. Three days after initial seeding of the primary cultures, the test groups were pre-treated with lithium chloride to selectively inhibit glycogen synthase kinase 3 beta to promote intracellular calcium levels, whereas the control groups received culture medium with no lithium chloride treatment. 24 h later, the cultures were incubated with rhodamine-2AM (rhod-2AM) calcium indicator dye for one hour prior to imaging. 5-HT was added to the culture dishes 5 min after commencement of imaging. Analysis of intracellular calcium levels in EGFP-GnIH neurons showed that pre-treatment with lithium chloride before 5-HT treatment resulted in significant increase in intracellular calcium levels, two times higher than the baseline. This suggests that lithium chloride enhances the responsiveness of GnIH neurons to 5-HT.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
  17. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors
  18. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
  19. John CM, Mohamed Yusof NIS, Abdul Aziz SH, Mohd Fauzi F
    Int J Mol Sci, 2018 Dec 05;19(12).
    PMID: 30563117 DOI: 10.3390/ijms19123894
    Gestational diabetes mellitus (GDM) carries many risks, where high blood pressure, preeclampsia and future type II diabetes are widely acknowledged, but less focus has been placed on its effect on cognitive function. Although the multifactorial pathogenesis of maternal cognitive impairment is not completely understood, it shares several features with type 2 diabetes mellitus (T2DM). In this review, we discuss some key pathophysiologies of GDM that may lead to cognitive impairment, specifically hyperglycemia, insulin resistance, oxidative stress, and neuroinflammation. We explain how these incidents: (i) impair the insulin-signaling pathway and/or (ii) lead to cognitive impairment through hyperphosphorylation of τ protein, overexpression of amyloid-β and/or activation of microglia. The aforementioned pathologies impair the insulin-signaling pathway primarily through serine phosphorylation of insulin receptor substances (IRS). This then leads to the inactivation of the phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) signaling cascade, which is responsible for maintaining brain homeostasis and normal cognitive functioning. PI3K/AKT is crucial in maintaining normal cognitive function through the inactivation of glycogen synthase kinase 3β (GSκ3β), which hyperphosphorylates τ protein and releases pro-inflammatory cytokines that are neurotoxic. Several biomarkers were also highlighted as potential biomarkers of GDM-related cognitive impairment such as AGEs, serine-phosphorylated IRS-1 and inflammatory markers such as tumor necrosis factor α (TNF-α), high-sensitivity C-reactive protein (hs-CRP), leptin, interleukin 1β (IL-1β), and IL-6. Although GDM is a transient disease, its complications may be long-term, and hence increased mechanistic knowledge of the molecular changes contributing to cognitive impairment may provide important clues for interventional strategies.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta
  20. Tan JN, Mohd Saffian S, Buang F, Jubri Z, Jantan I, Husain K, et al.
    Front Pharmacol, 2020;11:504624.
    PMID: 33328981 DOI: 10.3389/fphar.2020.504624
    Background:Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents. Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as "Gynura," "antioxidant," "anti-inflammatory," or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English. Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species. Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.
    Matched MeSH terms: Glycogen Synthase Kinase 3
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links