The primary objective of this study is to explore the interaction of β-galactosidase with copper oxide nanoparticles (CuO NPs). Steady-state absorption, fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes of β-galactosidase induced by the binding of CuO NPs. Temperature dependent fluorescence quenching results indicates a static quenching mechanism in the present case. The binding thermodynamic parameters delineate the predominant role of H-bonding and van der Waals forces between β-galactosidase and CuO NPs binding process. The binding was studied by isothermal titration calorimetry (ITC) and the result revealed that the complexation is enthalpy driven, the ΔH°<0, ΔS°<0 indicates the formation of hydrogen bonds between β-galactosidase and CuO NPs occurs. Disruption of the native conformation of the protein upon binding with CuO NPs is reflected through a reduced functionality (in terms of hydrolase activity) of the protein CuO NPs conjugate system in comparison to the native protein and CuO NPs exhibited a competitive mode of inhibition. This also supports the general belief that H-bond formation occurs with NPs is associated with a lesser extent of modification in the native structure. Morphological features and size distributions were investigated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Additionally the considerable increase in the Rh following the addition of CuO NPs accounts for the unfolding of β-galactosidase. Chemical and thermal unfolding of β-galactosidase, when carried out in the presence of CuO NPs, also indicated a small perturbation in the protein structure. These alterations in functional activity of nanoparticle bound β-galactosidase which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.
Urea and guanidine hydrochloride (GdnHCl) denaturation of bovine serum albumin (BSA) were investigated using bromophenol blue (BPB) binding as a probe. Addition of BPB to BSA produced an absorption difference spectrum in the wavelength range, 525-675 nm with a minimum at 587 nm and a maximum at 619 nm. The magnitude of absorption difference (DeltaAbs.) at 619 nm decreased on increasing urea/GdnHCl concentration and followed the denaturation curve. The denaturation was found to be a two-state, single-step transition. The transitions started at 1.75 and 0.875 M and completed at 6.5 and 3.25 M with the mid point occurring around 4.0 and 1.5 M urea and GdnHCl concentrations, respectively. The value of free energy of stabilization, DeltaGDH2O as determined from urea and GdnHCl denaturation curves was found to be 4041 and 4602 cal/mol, respectively. Taken together, these results suggest that BPB binding can be used as a probe to study urea and GdnHCl denaturation of BSA.
It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.
Using 100-fold molar excess of succinic anhydride, about 99% of lysine residues of hen egg white lysozyme (HEWL) were modified. Succinylated (S(99)) HEWL showed both charge and size homogeneity as judged by PAGE and gel filtration, respectively. Hydrodynamic parameters such as Stokes radius and frictional ratio (f/f(o)) showed more expanded conformation of S(99) HEWL compared to native HEWL as evident from the increase in Stokes radius (from 1.36 to 1.86 nm) and f/f(o) (from 0.86 to 1.15) values. Guanidine hydrochloride (GdnHCl) denaturation studies using fluorescence spectroscopy connoted a marked decrease in conformational stability of HEWL upon succinylation. Complete denaturation of S(99) HEWL was achieved at lower GdnHCl concentration ( approximately 3.8 M) compared to native HEWL ( approximately 5 M). Furthermore, free energy of stabilization (DeltaG(D)(H(2)O)) value also showed a notable decrease from 8,559 and 7,956 cal/mol (for native HEWL) to 4,404 and 4,669 cal/mol (for succinylated HEWL) using excitation at 280 and 295 nm, respectively. Both expanded conformation and decreased DeltaG(D)(H(2)O) can be attributed to the increase in the net negative charge on the protein upon succinylation. All these results manifested the importance of positively charged lysine residues in maintaining the conformational stability of HEWL through electrostatic interactions.
The influence of buffer composition on the conformational stability of native and calciumdepleted Bacillus licheniformis α-amylase (BLA) was investigated against guanidine hydrochloride (GdnHCl) denaturation using circular dichroism, fluorescence and UV-difference spectroscopy. Differential effect of buffer composition on GdnHCl denaturation of BLA was evident from the magnitude of these spectral signals, which followed the order: sodium phosphate > Tris-HCl > HEPES > MOPS. These effects became more pronounced with calcium-depleted BLA. Sephacryl S-200 gel chromatographic results showed significant BLA aggregation in the presence of 6 M GdnHCl.
Acid denaturation of champedak galactose-binding (CGB) lectin was studied in the pH range, 7.0-1.0 using intrinsic fluorescence and ANS fluorescence measurements. The lectin remained stable up to pH 5.0 and showed local disordering in the vicinity of the protein fluorophores within the pH range, 5.0-3.5. Decrease in the pH from pH 3.5 to pH 2.5 led to structural transition, marked by the decrease in the intrinsic fluorescence and increase in the ANS fluorescence signals. This can be ascribed to the dissociation of the tetrameric lectin into monomeric forms. Further decrease in the pH up to pH 1.5 produced another transition, which specified the unfolding of monomers as reflected from the decrease in both intrinsic fluorescence and ANS fluorescence signals. Characterization of the conformational states obtained at pH 7.0, pH 2.5 and pH 1.5 based on intrinsic and ANS fluorescence spectra, gel chromatographic behavior and thermal denaturation confirmed the existence of folded monomeric forms at pH 2.5 and unfolded states at pH 1.5. However, the aciddenatured state of CGB lectin at pH 1.5 retained significant residual structure, as evident from the greater loss of both secondary and tertiary structures in the presence of 6 M guanidine hydrochloride at low pH values. Anion-induced refolding below pH 1.5 was also seen using ANS fluorescence measurements.
Plant tissues, especially durian tissues contain high content of polysaccharides, polyphenols and other secondary metabolites which can co-precipitate with RNA causing problem in further transcriptomic study. In this experiment, three basic chaotic agents, CTAB, SDS and guanidine are used in three basic protocols for RNA isolation. The effectiveness of each method was determined by spectrophotometer, denaturing agarose gels analysis and northern blot hybridization. CTAB combining with additional sodium acetate precipitation step showed highest yield and best quality of isolated RNA which was free from contaminations of polysaccharides, polyphenols and other secondary metabolites. Furthermore, the total RNA from 4-month old durian flesh of clone D24 was successfully used to construct a cDNA library. In conclusion, CTAB method is effective to isolate total RNA on various types of durian tissues for further gene expression analysis.
The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q(2) of 0.516. The model has predicted r(2) of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors.
Treatment of Bacillus licheniformis α-amylase (BLA) with guanidine hydrochloride (GdnHCl) produced both denatured and aggregated forms of the enzyme as studied by circular dichroism, fluorescence, UV difference spectroscopy, size exclusion chromatography (SEC), and enzymatic activity. The presence of CaCl(2) in the incubation mixture produced significant recovery in spectral signals, being complete in presence of 10 mM CaCl(2), as well as in enzymatic activity, which is indicative of protein stabilization. However, the SEC results obtained with GdnHCl-denatured BLA both in the absence and the presence of 10 mM CaCl(2) suggested significant aggregation of the protein in the absence of CaCl(2) and disaggregation in its presence. Although partial structural stabilization with significant retention of enzymatic activity was observed in the presence of calcium, it was far from the native state, as reflected by spectral probes. Hence, spectral results as to BLA stabilization should be treated with caution in the presence of aggregation.
G6PD deficiency is the most common human enzymopathy and affects 200 million people worldwide. To date more than 400 biochemical variants and at least 60 different point mutations in the G6PD locus have been discovered. In Malaysia the overall incidence of G6PD deficiency among males is 3.1%, being more prevalent among the Chinese and Malays and less common among the Indians. As part of our initial effort to characterise G6PD deficiency in the Malaysian population, we investigated 18 G6PD deficient Chinese male neonates for the G6PD mutation G-->T at nt 1376, a common mutation seen among the Chinese in Taiwan and mainland China. The mutation was detected by a PCR-based technique using primers that artificially create a site for restriction enzyme Xho I. We found 61% (11 out of 18) of the Chinese G6PD deficient male neonates positive for this mutation. Study of enzyme electrophoretic mobility in 7 of the cases positive for this mutation revealed three different patterns of mobility. 107% (5 out of 7), 103% (1 out of 7) and 100% (1 out of 7). This study shows that mutation G-->T at nt 1376 is a common allele causing G6PD deficiency in Malaysians of Chinese origin. The finding of different patterns of electrophoretic mobility among the 7 cases positive for 1376 G-->T mutation supports the notion that diverse biochemical variants may share the same mutation.
Edible bird's nest (EBN) is a popular delicacy in the Asian Pacific region originating from Indonesia, Malaysia, Thailand and Vietnam, which consist of various potential medicine value in Traditional Chinese Medicine (TCM). Thailand is one of the main exporters of EBN. However, the genetic information of EBN, a key part of molecular biology, has yet to be reported in Thailand. It is necessary to explore the genetic information of EBN in Thailand based on a quick and simple method to help protect the rights and interests of consumers. This research aimed to systematically evaluate different methods of extracting EBN DNA to improve the efficiency of the analysis of cytochrome b (Cytb) and NADH dehydrogenase subunit 2 (ND2) gene sequences, the establishment of phylogenetic trees, and the genetic information of EBN in Thailand. Additionally, we aimed to develop a quick and simple method for identifying EBN from different species based on the genetic information and amplification-refractory mutation system PCR (ARMS-PCR). By comparing the four methods [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), kit and guanidinium isothiocyanate methods] for EBN extraction, we found that the guanidinium isothiocyanate method was the optimal extraction method. Phylogenetic trees generated on the basis of Cytb and ND2 gene analyses showed that 26 samples of house EBN and 4 samples of cave EBN came from Aerodramus fuciphagus and Aerodramus maximus, respectively. In addition, to distinguish different samples from different species of Apodiformes, we designed 4 polymerase chain reaction (PCR) amplification primers based on the ND2 gene sequences of A. fuciphagus and A. maximus. The ARMS-PCR results showed band lengths for A. fuciphagus EBN of 533, 402, and 201 bp, while those for A. maximus EBN were 463, 317, and 201 bp. Collectively, the results showed that ARMS-PCR is a fast and simple method for the genetic identification of EBN based on designing specific original identification primers.
The present study deals with the synthesis, characterization, and DNA extraction of poly(4,4'-cyclohexylidene bisphenol oxalate)/silica (Si) nanocomposites (NCs). The effects of varying the monomer/Si (3.7%, 7%, and 13%) ratio towards the size and morphology of the resulting NC and its DNA extraction capabilities have also been studied. For the NC synthesis, two different methods were followed, including the direct mixing of poly(4,4'-cyclohexylidene bisphenol oxalate) with fumed Si, and in situ polymerization of the 4,4'-cyclohexylidene bisphenol monomer in the presence of fumed silica (11 nm). The formed NCs were thoroughly investigated by using different techniques such as scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis where the results supported that there was the successful formation of poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC. Within the three different NC samples, the one with 13% Si was found to maintain a very high surface area of 12.237 m²/g, as compared to the other two samples consisting of 7% Si (3.362 m²/g) and 3.7% Si (1.788 m²/g). Further, the solid phase DNA extraction studies indicated that the efficiency is strongly influenced by the amount of polymer (0.2 g > 0.1 g > 0.02 g) and the type of binding buffer. Among the three binding buffers tested, the guanidine hydrochloride/EtOH buffer produced the most satisfactory results in terms of yield (1,348,000 ng) and extraction efficiency (3370 ng/mL) as compared to the other two buffers of NaCl (2 M) and phosphate buffered silane. Based on our results, it can be indicated that the developed poly(4,4'-cyclohexylidene bisphenol oxalate)/Si NC can serve as one of the suitable candidates for the extraction of DNA in high amounts as compared to other traditional solid phase approaches.
Bacterial adherence to connective tissue, especially to collagen has been vastly known for their invasive and infectious activities. However, the ability to exploit the unique and specific interactions between bacteria and collagen as a novel approach in detection of placental collagen has never been explored. This study aimed to determine bacteria with binding specificity to placental collagen (Type IV) derived from human and sheep. In order to do this, total bacteria from small intestines of pig and cow were isolated and their ability to bind to Type IV placental collagen (human and sheep) was determined. Interestingly, three bacterial samples; P5, P9 (pig small intestine origin) and B7 (cow small intestine origin) were found to be able to bind strongly to the placental collagen. The bacterial binding to human placental collagen was however, diminished after the bacteria were treated with trypsin, proteinase K (for removal of surface protein) and guanidine hydrochloride (for S-layer removal), suggesting that the interaction of these bacteria to placental collagen was promoted by protein(s) present at the bacterial surface. In addition, significant reduction of placental collagen-binding ability of the bacteria pre-incubated with soluble human placental collagen showed that there is a specific interaction between the bacteria and collagen. P5, P9 and B7 bacteria were found to share 95-97% 16S rRNA sequence similarity to Enterococcus faecalis ZL, Enterococcus hirae ss33b and Enterococcus faecium M3-1, respectively. The results presented here may facilitate future studies in identifying bacterial surface protein(s) responsible for the specific binding of bacteria to collagen and opens new opportunity to utilize the protein(s) for the detection of placental collagen in nutraceutical and food supplements.