Displaying all 12 publications

Abstract:
Sort:
  1. Sohni S, Hassan T, Khan SB, Akhtar K, Bakhsh EM, Hashim R, et al.
    Int J Biol Macromol, 2023 Jan 15;225:1426-1436.
    PMID: 36436599 DOI: 10.1016/j.ijbiomac.2022.11.200
    In this work, facile fabrication of lignin nanoparticles (LNP)-based three-dimensional reduced graphene oxide hydrogel (rGO@LNP) has been demonstrated as a novel strategy for environmental applications. Herein, LNP were facilely synthesized from walnut shell waste through a direct chemical route. These LNP were incorporated into the continuous porous network of rGO network to fabricate rGO@LNP hydrogel. Characterization studies were carried out using various analytical techniques viz. scanning electron microscopy, Fourier transform IR spectroscopy, X-ray diffraction and thermogravimetric analysis. The efficiency of rGO@LNP hydrogel as adsorptive platform was evaluated by employing methylene blue and Pb2+ as model pollutants, whilst the effect of various experimental parameters was ascertained for optimal performance. Furthermore, Agar well diffusion method was used to check the antibacterial activities of the hydrogel using two bacterial pathogenic strains, i.e. Klebsiella pneumoniae (gram negative) and Enterococcus faecalis (gram positive). Results showed that after the inclusion of LNP into rGO hydrogel, there was a marked improvement in pollutant's uptake ability and compared to bare LNP and rGO, the composite hydrogel showed enhanced bactericidal effect. Overall, this approach is outstanding because of the synergy of functional properties of nano-lignin and rGO due to multi-interaction sites in the resulting hydrogel. The results presented herein support the application of rGO@LNP as innovative water filter material for scavenging broad spectrum pollutants and bactericidal properties.
    Matched MeSH terms: Hydrogels/pharmacology
  2. Bakar AJA, Azam NSM, Sevakumaran V, Ismail WIW, Razali MH, Razak SIA, et al.
    Int J Biol Macromol, 2023 Aug 01;245:125494.
    PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494
    The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
    Matched MeSH terms: Hydrogels/pharmacology
  3. Parveen N, Sheikh A, Molugulu N, Annadurai S, Wahab S, Kesharwani P
    Environ Res, 2023 Nov 01;236(Pt 2):116850.
    PMID: 37558118 DOI: 10.1016/j.envres.2023.116850
    Atopic dermatitis is one of the most widespread chronic inflammatory skin conditions that can occur at any age, though the prevalence is highest in children. The purpose of the current study was to prepare and optimize the azelaic acid (AzA) loaded SNEDDS using Pseudo ternary phase diagram, which was subsequently incorporated into the Carbopol 940 hydrogel for the treatment of atopic dermatitis. The composition was evaluated for size, entrapment efficiency, in vitro, ex vivo, and in vivo studies. The polydispersity index of the optimized preparation was found to be less than 0.5, and the size of the distributed globules was found to be 151.20 ± 3.67 nm. The SNEDDS hydrogel was characterized for pH, viscosity, spreadability, and texture analysis. When compared to the marketed formulation, SNEDDS hydrogel was found to have a higher rate of permeation through the rat skin. In addition, a skin irritation test carried out on experimental animals showed that the SNEDDS formulation did not exhibit any erythematous symptoms after a 24-h exposure. In conclusion, the topical delivery of AzA through the skin using SNEDDS hydrogel could prove to be an effective approach for the treatment of atopic dermatitis.
    Matched MeSH terms: Hydrogels/pharmacology
  4. Wren AW, Hassanzadeh P, Placek LM, Keenan TJ, Coughlan A, Boutelle LR, et al.
    Macromol Biosci, 2015 Aug;15(8):1146-58.
    PMID: 25923463 DOI: 10.1002/mabi.201500109
    Silver (Ag) coated bioactive glass particles (Ag-BG) were formulated and compared to uncoated controls (BG) in relation to glass characterization, solubility and microbiology. X-ray diffraction (XRD) confirmed a crystalline AgNP surface coating while ion release studies determined low Ag release (<2 mg/L). Cell culture studies presented increased cell viability (127 and 102%) with lower liquid extract (50 and 100 ml/ml) concentrations. Antibacterial testing of Ag-BG in E. coli, S. epidermidis and S. aureus significantly reduced bacterial cell viability by 60-90%. Composites of Ag-BG/CMC-Dex Hydrogels were formulated and characterized. Agar diffusion testing was conducted where Ag-BG/hydrogel composites produced the largest inhibition zones of 7 mm (E. coli), 5 mm (S. aureus) and 4 mm (S. epidermidis).
    Matched MeSH terms: Hydrogels/pharmacology
  5. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Hydrogels/pharmacology
  6. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Hydrogels/pharmacology*
  7. Poh Yuen Wen A, Halim AS, Mat Saad AZ, Mohd Nor F, Wan Sulaiman WA
    Complement Ther Med, 2018 Dec;41:261-266.
    PMID: 30477850 DOI: 10.1016/j.ctim.2018.10.006
    BACKGROUND: Gamat (sea-cucumber) is a natural occurring fauna which is popularly used as traditional medication in Southeast Asian countries. There have been many animal studies done on its' biochemical properties and its' effects in vivo. The effect of gamat on human cutaneous wounds was studied using a split-skin graft donor site wound.

    METHODS: This was a comparative case-control study done on patients in Hospital Universiti Sains Malaysia (Hospital USM), requiring split-thickness skin grafting, whereby, the skin graft donor site was divided to almost equal halves, and applied with both gamat-based gel on one side, with Duoderm® hydrogel on the other side. The epithelialization of the wounds was observed and compared on days 10, 14 and 21. Pain score, and pruritus score were also observed. Repeated measure analysis of variance (ANOVA) test and Paired t-test was used to test statistical significance accordingly.

    RESULTS: No significant differences were seen in rates of epithelialization of wounds on days 10, 14 and 21 (p > 0.01). No significant difference was also seen in the pain score and pruritus score (p > 0.01).

    CONCLUSIONS: A gamat-based gel is comparable to conventional hydrogels in treatment of split-skin graft donor site. No adverse effects were observed in either group.

    Matched MeSH terms: Hydrogels/pharmacology*
  8. Shing WL, Heng LY, Surif S
    Sensors (Basel), 2013;13(5):6394-404.
    PMID: 23673679 DOI: 10.3390/s130506394
    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 µg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 µg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 µg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability.
    Matched MeSH terms: Hydrogels/pharmacology
  9. Ali NH, Amin MCIM, Ng SF
    J Biomater Sci Polym Ed, 2019 06;30(8):629-645.
    PMID: 30896336 DOI: 10.1080/09205063.2019.1595892
    Biofilms comprise bacteria attached to wound surfaces and are major contributors to non-healing wounds. It was found that the increased resistance of biofilms to antibiotics allows wound infections to persist chronically in spite of antibiotic therapy. In this study, the reduced form of graphene oxide (rGO) was explored as plausible antibiofilm agents. The rGO was synthesized via reducing the functional groups of GO. Then, rGO were characterized using zetasizer, X-ray photoelectron spectroscopy, UV-Vis spectroscopy and FESEM. The rGO were then formulated into sodium carboxymethyl cellulose (NaCMC) hydrogels to form rGO hydrogel and tested for antibiofilm activities in vitro using XTT test, and in vivo biofilm formation assay using nematodes C. elegans. Reduced GO hydrogel was successfully formed by reducing the functional groups of GO, and a reduction of up to 95% of functional groups was confirmed with X-ray photoelectron spectroscopy analysis. XTT tests confirmed that rGO hydrogels reduced biofilm formation by S. aureus (81-84%) and P. aeruginosa (50-62%). Fluorescence intensity also confirmed that rGO hydrogel can inhibit biofilm bacteria in C. elegans experiments. This study implied that rGO hydrogel is an effective antibiofilm agent for infected wounds.
    Matched MeSH terms: Hydrogels/pharmacology
  10. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Hydrogels/pharmacology
  11. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Hydrogels/pharmacology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links