Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Sethuraman RM, Suresh V
    Anesth Analg, 2023 Aug 01;137(2):e19.
    PMID: 37450919 DOI: 10.1213/ANE.0000000000006581
    Matched MeSH terms: Hypnotics and Sedatives
  2. Shehabi Y, Serpa Neto A, Bellomo R, Howe BD, Arabi YM, Bailey M, et al.
    Am J Respir Crit Care Med, 2023 Apr 01;207(7):876-886.
    PMID: 36215171 DOI: 10.1164/rccm.202206-1208OC
    Rationale: The SPICE III (Sedation Practice in Intensive Care Evaluation) trial reported significant heterogeneity in mortality with dexmedetomidine treatment. Supplemental propofol was commonly used to achieve desirable sedation. Objectives: To quantify the association of different infusion rates of dexmedetomidine and propofol, given in combination, with mortality and to determine if this is modified by age. Methods: We included 1,177 patients randomized in SPICE III to receive dexmedetomidine and given supplemental propofol, stratified by age (>65 or ⩽65 yr). We used double stratification analysis to produce quartiles of steady infusion rates of dexmedetomidine while escalating propofol dose and vice versa. We used Cox proportional hazard and multivariable regression adjusted for relevant clinical variable to evaluate the association of sedative dose with 90-day mortality. Measurements and Main Results: Younger patients (598 of 1,177 [50.8%]) received significantly higher doses of both sedatives compared with older patients to achieve comparable sedation depth. On double stratification analysis, escalating infusion rates of propofol to 1.27 mg/kg/h at a steady dexmedetomidine infusion rate (0.54 μg/kg/h) was associated with reduced adjusted mortality in younger but not older patients. This was consistent with multivariable regression modeling (hazard ratio, 0.59; 95% confidence interval, 0.43-0.78; P 
    Matched MeSH terms: Hypnotics and Sedatives/adverse effects
  3. Munirah MP, Norhayati MN, Noraini M
    Int J Environ Res Public Health, 2022 Sep 16;19(18).
    PMID: 36141931 DOI: 10.3390/ijerph191811658
    Insomnia is a common complaint affecting human performance in daily life activities. This study aimed to analyze the effects of Crocus sativus on insomnia. Methods: PRISMA guidelines were used according to the PICOS model. A systematic search of PubMed/Medline and the Cochrane Library was undertaken for literature until December 2021. A random effects model was used with I2 statistic to assess heterogeneity and a GRADE assessment was used to assess the quality of the outcomes. Eight articles were included, involving 431 participants. Crocus sativus reduced insomnia severity (SMD: 0.53; 95%CI: -0.05 to 1.11; I2 statistic = 59%; p = 0.08) and increased sleep quality (SMD 0.89, 95% CI 0.10 to 1.68; I2 statistic = 90%; p = 0.03; 6 studies, 308 participants, very low-quality evidence) and duration (SMD: 0.57; 95%CI: 0.21 to 0.93; I2 statistic = 40%; p = 0.002; 5 studies; 220 participants, moderate-quality evidence) compared with the placebos. Although there is limited evidence of a very low- to moderate-quality, Crocus sativus may benefit people with insomnia. This non-pharmacological intervention may reduce the chance of adults with insomnia taking sedative-hypnotic medication, thus reducing dependency and withdrawal symptoms.
    Matched MeSH terms: Hypnotics and Sedatives
  4. Walsh SM, Forward CL, Flaherty GT
    J Sleep Res, 2022 Dec;31(6):e13672.
    PMID: 35726362 DOI: 10.1111/jsr.13672
    Parasomnias are undesirable events that occur during sleep. They can be classified into rapid eye movement parasomnias and non-rapid eye movement parasomnias. Those who experience parasomnias may be anxious about travel for many reasons, including the occurrence of unwanted events during the trip, increased exposure to environmental trigger factors, and the propensity for harm to occur due to unfamiliar surroundings while travelling. There is a paucity of literature examining this area. This review summarizes the relevant literature and the clinical experience of the authors to compile clinical practice recommendations. The clinical features of parasomnias and how they relate to trans-meridian and long-distance travel are described. Triggers for non-rapid eye movement parasomnias, particularly the use of sedative hypnotic drugs, alcohol, drug withdrawal, sleep deprivation, emotional stress and environmental stimulations, are described. Management of parasomnias whilst travelling is reviewed, with a particular focus on trigger minimalization. The role for clonazepam and melatonin is outlined. At the pre-travel health consultation, the physician is strongly advised to screen the traveller for co-morbid sleep conditions, which exacerbate parasomnias. Areas for further research are explored, including the extent to which these sleep disorders impact on the travel experience.
    Matched MeSH terms: Hypnotics and Sedatives
  5. Ahmad N, Tan CC, Balan S
    Med J Malaysia, 2007 Jun;62(2):122-6.
    PMID: 18705443 MyJurnal
    We sought to review the current practice of sedation and analgesia in intensive care units (ICUs) in Malaysian public hospitals. A questionnaire survey was designed and sent by mail to 40 public hospitals with ICU facility in Malaysia. The anaesthesiologists in charge of ICU were asked to complete the questionnaire. Thirty seven questionnaires were returned (92.5% response rate). Only 35% respondents routinely assess the degree of sedation. The Ramsay scale was used prevalently. A written protocol for sedation was available in only 14 centers (38%). Although 36 centers (95%) routinely adjust the degree of sedation according to patient's clinical progress, only 10 centers (14%) interrupt sedation on a daily basis. Most respondents agreed that the selection of agents for sedation depends on familiarity (97%), pharmacology (97%), the expected duration for sedation (92%), patient's clinical diagnosis (89%) and cost (73%). Midazolam (89%) and morphine (86%) were the most commonly used agents for sedation and analgesia, respectively. Only 14% respondents still frequently use neuromuscular blocking agents, mostly in head injury patients. Our survey showed similarity in the choice of sedative and analgesic agents in ICUs in Malaysian public hospitals comparable to international practice. Nevertheless, the standard of practice could still be improved by implementing the practice of sedation score assessment and daily interruption of sedative infusion as well as having a written protocol for sedation and analgesia.
    Matched MeSH terms: Hypnotics and Sedatives/therapeutic use*
  6. Fong CY, Lim WK, Li L, Lai NM
    Cochrane Database Syst Rev, 2021 08 16;8:CD011786.
    PMID: 34397100 DOI: 10.1002/14651858.CD011786.pub3
    BACKGROUND: This is an updated version of a Cochrane Review published in 2017. Paediatric neurodiagnostic investigations, including brain neuroimaging and electroencephalography (EEG), play an important role in the assessment of neurodevelopmental disorders. The use of an appropriate sedative agent is important to ensure the successful completion of the neurodiagnostic procedures, particularly in children, who are usually unable to remain still throughout the procedure.

    OBJECTIVES: To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children.

    SEARCH METHODS: We searched the following databases on 14 May 2020, with no language restrictions: the Cochrane Register of Studies (CRS Web) and MEDLINE (Ovid, 1946 to 12 May 2020). CRS Web includes randomised or quasi-randomised controlled trials from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Cochrane Epilepsy.

    SELECTION CRITERIA: Randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo.

    DATA COLLECTION AND ANALYSIS: Two review authors independently evaluated studies identified by the search for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with 95% confidence intervals (CIs).

    MAIN RESULTS: We included 16 studies with a total of 2922 children. The methodological quality of the included studies was mixed. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 16 studies were at high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in small studies. Fewer children who received oral chloral hydrate had sedation failure compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study; moderate-certainty evidence). More children who received oral chloral hydrate had sedation failure after one dose compared to intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study; low-certainty evidence), but there was no clear difference after two doses (RR 3.00, 95% CI 0.33 to 27.46; 1 study; very low-certainty evidence). Children with oral chloral hydrate had more sedation failure compared with rectal sodium thiopental (RR 1.33, 95% CI 0.60 to 2.96; 1 study; moderate-certainty evidence) and music therapy (RR 17.00, 95% CI 2.37 to 122.14; 1 study; very low-certainty evidence). Sedation failure rates were similar between groups for comparisons with oral dexmedetomidine, oral hydroxyzine hydrochloride, oral midazolam and oral clonidine. Children who received oral chloral hydrate had a shorter time to adequate sedation compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study) (moderate-certainty evidence for three aforementioned outcomes), rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study), and oral clonidine (MD -37.48, 95% CI -55.97 to -18.99; 1 study) (low-certainty evidence for two aforementioned outcomes). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study; low-certainty evidence), intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study; moderate-certainty evidence), and intranasal dexmedetomidine (MD 2.80, 95% CI 0.77 to 4.83; 1 study, moderate-certainty evidence). Children who received oral chloral hydrate appeared significantly less likely to complete neurodiagnostic procedure with child awakening when compared with rectal sodium thiopental (RR 0.95, 95% CI 0.83 to 1.09; 1 study; moderate-certainty evidence). Chloral hydrate was associated with a higher risk of the following adverse events: desaturation versus rectal sodium thiopental (RR 5.00, 95% 0.24 to 102.30; 1 study), unsteadiness versus intranasal dexmedetomidine (MD 10.21, 95% CI 0.58 to 178.52; 1 study), vomiting versus intranasal dexmedetomidine (MD 10.59, 95% CI 0.61 to 185.45; 1 study) (low-certainty evidence for aforementioned three outcomes), and crying during administration of sedation versus intranasal dexmedetomidine (MD 1.39, 95% CI 1.08 to 1.80; 1 study, moderate-certainty evidence). Chloral hydrate was associated with a lower risk of the following: diarrhoea compared with rectal sodium thiopental (RR 0.04, 95% CI 0.00 to 0.72; 1 study), lower mean diastolic blood pressure compared with sodium thiopental (MD 7.40, 95% CI 5.11 to 9.69; 1 study), drowsiness compared with oral clonidine (RR 0.44, 95% CI 0.30 to 0.64; 1 study), vertigo compared with oral clonidine (RR 0.15, 95% CI 0.01 to 2.79; 1 study) (moderate-certainty evidence for aforementioned four outcomes), and bradycardia compared with intranasal dexmedetomidine (MD 0.17, 95% CI 0.05 to 0.59; 1 study; high-certainty evidence). No other adverse events were significantly associated with chloral hydrate, although there was an increased risk of combined adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study; low-certainty evidence).

    AUTHORS' CONCLUSIONS: The certainty of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine. Sedation failure was similar between groups for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. Oral chloral hydrate had a higher sedation failure rate when compared with intravenous pentobarbital, rectal sodium thiopental, and music therapy. Chloral hydrate appeared to be associated with higher rates of adverse events than intranasal dexmedetomidine. However, the evidence for the outcomes for oral chloral hydrate versus intravenous pentobarbital, rectal sodium thiopental, intranasal dexmedetomidine, and music therapy was mostly of low certainty, therefore the findings should be interpreted with caution. Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for an additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially for major adverse effects such as oxygen desaturation.

    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage*; Hypnotics and Sedatives/adverse effects
  7. Teah MK, Chan GK, Wong MTF, Yeap TB
    BMJ Case Rep, 2021 Jan 08;14(1).
    PMID: 33419751 DOI: 10.1136/bcr-2020-238318
    Prolonged exposure to benzodiazepines (BDZ) may contribute towards physical dependence, which is manifested by iatrogenic Benzodiazepine Withdrawal Syndrome (BWS), a condition often underdiagnosed. Current evidence recommends precluding BDZ infusion as sedation in the intensive care unit to avoid possible withdrawal and delirium issues. Administration of dexmedetomidine should be considered to facilitate weaning in patients with BWS.
    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage; Hypnotics and Sedatives/adverse effects*
  8. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K
    Expert Opin Drug Metab Toxicol, 2019 Feb;15(2):103-112.
    PMID: 30582435 DOI: 10.1080/17425255.2019.1563596
    INTRODUCTION: One major challenge to achieving optimal patient outcome in extracorporeal membrane oxygenation (ECMO) is the development of effective dosing strategies in this critically ill patient population. Suboptimal drug dosing impacts on patient outcome as patients on ECMO often require reversal of the underlying pathology with effective pharmacotherapy in order to be liberated of the life-support device. Areas covered: This article provides a concise review of the effective use of antibiotics, analgesics, and sedative by characterizing the specific changes in PK secondary to the introduction of the ECMO support. We also discuss the barriers to achieving optimal pharmacotherapy in patients on ECMO and also the current and potential research that can be undertaken to address these clinical challenges. Expert opinion: Decreased bioavailability due to sequestration of drugs in the ECMO circuit and ECMO induced PK alterations are both significant barriers to optimal drug dosing. Evidence-based drug choices may minimize sequestration in the circuit and would enable safety and efficacy to be maintained. More work to characterize ECMO related pharmacodynamic alterations such as effects of ECMO on hepatic cytochrome system are still needed. Novel techniques to increase target site concentrations should also be explored.
    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage*; Hypnotics and Sedatives/pharmacokinetics
  9. Bhore SJ, Preveena J, Kandasamy KI
    Pharmacognosy Res, 2013 Apr;5(2):134-7.
    PMID: 23798890 DOI: 10.4103/0974-8490.110545
    Resins and gums are used in traditional medicine and do have potential applications in pharmacy and medicine. Agarwood is the fragrant resinous wood, which is an important commodity from Aquilaria species and has been used as a sedative, analgesic, and digestive in traditional medicine. Endophytic bacteria are potentially important in producing pharmaceutical compounds found in the plants. Hence, it was important to understand which types of endophytic bacteria are associated with pharmaceutical agarwood-producing Aquilaria species.
    Matched MeSH terms: Hypnotics and Sedatives
  10. Ngen CC, Hassan R
    Int Clin Psychopharmacol, 1990 Jul;5(3):165-71.
    PMID: 2230060
    Zopiclone, a cyclopyrrolone with hypnotic properties was compared with temazepam and placebo in the treatment of insomnia. After a week's washout period, suitable subjects were allocated at random to zopiclone 7.5 mg or temazepam 20 mg or placebo for 2 weeks. Measurements of psychomotor function using the Leed's psychomotor tester and letter cancellation were carried out on day 0, 7 and 14. Sleep latency, duration of sleep and number of times waking during the night were recorded on a sleep diary filled by the subjects nightly. Forty-four subjects completed the trial, 15 taking zopiclone, 16 taking temazepam and 10 taking placebo. Both zopiclone and temazepam had significant hypnotic properties when compared to placebo. Zopiclone increased total sleep time in both weeks of the trial while temazepam increased sleep time in the first week only. There was no significant deterioration in psychomotor performance at the end of both weeks for zopiclone. Critical flicker fusion was significantly increased in subjects on temazepam. There were no abnormalities for both zopiclone and temazepam subjects in the blood picture, renal profile, liver function, urine and ECG before and after the study. Zopiclone is an effective hypnotic comparable to temazepam.
    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage; Hypnotics and Sedatives/adverse effects; Hypnotics and Sedatives/therapeutic use*
  11. Wong, W. H., Lim, T. A., Lim, K. Y.
    MyJurnal
    Introduction: Giving two intravenous anaesthetic agents simultaneously generally results in an additive effect. The aim of this study was to investigate the interaction between propofol and thiopental when given to patients who have had sedative premedication. Methods: Fifty patients were admitted into the study. All patients received oral midazolam 3.75 mg and intravenous fentanyl 100 mg before induction of anaesthesia. Twenty patients received an infusion of either propofol or thiopental while 30 patients received an infusion of an admixture of both drugs. Isobolographic analysis was used to determine the interaction between the two drugs. Results: The interaction between propofol and thiopental was
    additive. The average dose at loss of the eyelash reflex for propofol and thiopental was 0.71 mg kg-1 and 1.54 mg kg-1 respectively. Premedication decreased the induction dose by 38.2%. Conclusion: Propofol and thiopental interact in an additive fashion when given at induction of anaesthesia.
    Matched MeSH terms: Hypnotics and Sedatives
  12. Teoh WK, Mohamed Sadiq NS, Saisahas K, Phonchai A, Kunalan V, Md Muslim NZ, et al.
    J Forensic Sci, 2023 Jan;68(1):75-85.
    PMID: 36273275 DOI: 10.1111/1556-4029.15156
    Drugs-facilitated crimes (DFCs) involve the incapacitation of victims under the influence of drugs. Conventionally, a drug administration act is often determined through the examination of biological samples; however, dry residues from any surface, such as drinking glass if related to a DFC could be a potential source of evidence. This study was aimed to establish an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for the determination of spiked sedative-hypnotics from dry residues of a drug-spiked beverage. In this study, four sedative-hypnotics, namely diazepam, ketamine, nimetazepam, and xylazine were examined using ATR-FTIR spectroscopy. Subsequently, the ATR-FTIR profiles were compared and decomposed by principal component analysis (PCA) followed by linear discriminant analysis (LDA) for their detection and discrimination. Visual comparison of ATR-FTIR profiles revealed distinct spectra among the tested drugs. An initial unsupervised exploratory PCA model indicated the separation of four main sedative-hypnotics clusters, and the proposed PCA score-LDA model had allowed for a 100% accurate classification. Discrimination of sedative-hypnotics from a dry beverage previously spiked with these drugs was also possible upon an additional extraction procedure. In conclusion, ATR-FTIR coupled with PCA score-LDA model was useful in detecting and discriminating sedative-hypnotics, including those that had been previously spiked into a beverage.
    Matched MeSH terms: Hypnotics and Sedatives
  13. Shehabi Y, Serpa Neto A, Howe BD, Bellomo R, Arabi YM, Bailey M, et al.
    Intensive Care Med, 2021 Apr;47(4):455-466.
    PMID: 33686482 DOI: 10.1007/s00134-021-06356-8
    PURPOSE: To quantify potential heterogeneity of treatment effect (HTE), of early sedation with dexmedetomidine (DEX) compared with usual care, and identify patients who have a high probability of lower or higher 90-day mortality according to age, and other identified clusters.

    METHODS: Bayesian analysis of 3904 critically ill adult patients expected to receive invasive ventilation > 24 h and enrolled in a multinational randomized controlled trial comparing early DEX with usual care sedation.

    RESULTS: HTE was assessed according to age and clusters (based on 12 baseline characteristics) using a Bayesian hierarchical models. DEX was associated with lower 90-day mortality compared to usual care in patients > 65 years (odds ratio [OR], 0.83 [95% credible interval [CrI] 0.68-1.00], with 97.7% probability of reduced mortality across broad categories of illness severity. Conversely, the probability of increased mortality in patients ≤ 65 years was 98.5% (OR 1.26 [95% CrI 1.02-1.56]. Two clusters were identified: cluster 1 (976 patients) mostly operative, and cluster 2 (2346 patients), predominantly non-operative. There was a greater probability of benefit with DEX in cluster 1 (OR 0.86 [95% CrI 0.65-1.14]) across broad categories of age, with 86.4% probability that DEX is more beneficial in cluster 1 than cluster 2.

    CONCLUSION: In critically ill mechanically ventilated patients, early sedation with dexmedetomidine exhibited a high probability of reduced 90-day mortality in older patients regardless of operative or non-operative cluster status. Conversely, a high probability of increased 90-day mortality was observed in younger patients of non-operative status. Further studies are needed to confirm these findings.

    Matched MeSH terms: Hypnotics and Sedatives
  14. Batra YK, Ivanova M, Ali SS, Shamsah M, Al Qattan AR, Belani KG
    Paediatr Anaesth, 2005 Dec;15(12):1094-7.
    PMID: 16324030 DOI: 10.1111/j.1460-9592.2005.01633.x
    BACKGROUND: Laryngospasm is a well-known problem typically occurring immediately following tracheal extubation. Propofol is known to inhibit airway reflexes. In this study, we sought to assess whether the empiric use of a subhypnotic dose of propofol prior to emergence will decrease the occurrence of laryngospasm following extubation in children.
    METHODS: After approval from the Institutional Ethics Committee and informed parental consent, we enrolled 120 children ASA physical status I and II, aged 3-14 years who were scheduled to undergo elective tonsillectomy with or without adenoidectomy under standard general anesthesia. Before extubation, the patients were randomized and received in a blinded fashion either propofol 0.5 mg.kg(-1) or saline (control) intravenously. Tracheal extubation was performed 60 s after administration of study drug, when the child was breathing regularly and reacting to the tracheal tube.
    RESULTS: Laryngospasm was seen in 20% (n = 12) of the 60 children in the control group and in only 6.6% (n = 4) of 60 children in the propofol group (P < 0.05).
    CONCLUSIONS: During emergence from inhalational anesthesia, propofol in a subhypnotic dose (0.5 mg.kg(-1)) decreases the likelihood of laryngospasm upon tracheal extubation in children undergoing tonsillectomy with or without adenoidectomy.
    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage*
  15. Chuah SY
    Med J Malaysia, 1995 Jun;50(2):162-5.
    PMID: 7565187
    Matched MeSH terms: Hypnotics and Sedatives*
  16. Singh D, Narayanan S, Grundmann O, Dzulkapli EB, Vicknasingam B
    Subst Use Misuse, 2019;54(14):2284-2289.
    PMID: 31347441 DOI: 10.1080/10826084.2019.1645178
    Background: Mitragyna speciosa (Korth.) or kratom is an indigenous medicinal plant of Southeast Asia. Kratom is widely reported to have dose-dependent effects based on available literature, but to our knowledge, this has not been established conclusively. Objective: This study sought to evaluate if kratom use produces dose-dependent effects, with a stimulant effect at low doses and a sedative effect at high doses, in a sample of regular kratom users. Methods: A total of 63 regular kratom users participated in this cross-sectional study. The Brief-Biphasic Alcohol Effects Scale (B-BAES) was used to determine subjects self-report kratom use experiences. Results: Almost all in the sample were male (98%, n = 62/63), and the majority of subjects were Malays (94%, n = 59/63). The mean age of the subjects in the sample was 43.8 years (SD = 12.1). Seventy-five percent (n = 47/63) have >5 years kratom use history, and 65% (n = 41/63) consumed >3 glasses of kratom daily. Results from first test showed no significant difference in the stimulant (t61 =0.371, p 3 glasses a day or less than this amount, regardless of duration of use. In the second test, no significant differences in the mean scores were found among those who consumed >3 glasses daily or less than this amount among short-term or long-term uses. Conclusions: Daily kratom use produced both stimulant and sedative effects but they were not statistically significantly associated with the dose consumed, both among short-term and long-term users in our sample.
    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage*
  17. Foo TY, Mohd Noor N, Yazid MB, Fauzi MH, Abdull Wahab SF, Ahmad MZ
    BMC Emerg Med, 2020 10 08;20(1):81.
    PMID: 33032544 DOI: 10.1186/s12873-020-00373-4
    OBJECTIVES: The aim of this review is to elucidate the efficacy and side effects of ketofol in comparison to other anaesthetic agents during procedural sedation and analgesia.

    METHOD: The Cochrane Central Register of Controlled Trials (1996 to Feb 2019) and MEDLINE (1966 to Feb 2019) were searched, including the related randomised control trials and reviewed articles to find unpublished trials or trials not obtained via electronic searches. Inclusion criteria for the studies included comparing recovery time, recording clinician satisfaction, and assessing the adverse effects of ketofol.

    RESULTS: Eleven trials consisting of a total of 1274 patients met our criteria and were included in this meta-analysis. Five trials compared ketofol with a single agent, while six trials compared ketofol with combined agents. While comparing between ketofol and a single agent (either ketamine or propofol), ketofol showed significant effect on recovery time (MD: -9.88, 95% CI: - 14.30 to - 5.46; P = 0.0003; I2 = 92%). However, no significant difference was observed while comparing ketofol with combined agents (RR: 0.75, 95% CI: - 6.24 to 7.74; P < 0.001; I2 = 98%). During single-agent comparison, ketofol showed no significant differences in terms of clinician satisfaction (RR: 2.86, 95% CI: 0.64 to 12.69; P = 0.001; I2 = 90%), airway obstruction (RR: 0.72, 95% CI: 0.35 to 11.48; P = 0.81; I2 = 0%), apnoea (RR: 0.9, 95% CI: 0.33 to 2.44; P = 0.88; I2 = 0%), desaturation (RR: 1.11, 95% CI: 0.64 to 1.94; P = 0.28; I2 = 21%), nausea (RR: 0.52, 95% CI: 0.91 to 1.41; P = 0.2; I2 = 38%), and vomiting (RR: 0.63, 95% CI: 0.25 to 1.61; P = 0.18; I2 = 42%). During comparison with combined agents, ketofol was more effective in reducing hypotension (RR: 4.2, 95% CI: 0.2 to 0.85; P = 0.76; I2 = 0%), but no differences were observed in terms of bradycardia (RR: 0.70, 95% CI: 0.14 to 03.63; P = 0.09; I2 = 53%), desaturation (RR: 1.9, 95% CI: 0.15 to 23.6; P = 0.11; I2 = 61%), and respiratory depression (RR: 1.98, 95% CI: 0.18 to 21.94; P = 0.12; I2 = 59%).

    CONCLUSION: There is low certainty of evidence that ketofol improves recovery time and moderate certainty of evidence that it reduces the frequency of hypotension. There was no significant difference in terms of other adverse effects when compared to other either single or combined agents.

    TRIAL REGISTRATION: PROSPERO CRD42019127278 .

    Matched MeSH terms: Hypnotics and Sedatives/therapeutic use*
  18. Ahmad AA, Douay G, Low MR, Fabbri S, Chen HC
    Vet Anaesth Analg, 2021 May;48(3):380-387.
    PMID: 33827780 DOI: 10.1016/j.vaa.2021.02.003
    OBJECTIVE: To assess the efficacy of butorphanol-azaperone-medetomidine (BAM) and butorphanol-midazolam-medetomidine (BMM) protocols for immobilization of wild common palm civets (Paradoxurus musangus) with subsequent antagonization with atipamezole.

    STUDY DESIGN: Prospective, randomized, blinded clinical trial.

    ANIMALS: A total of 40 adult wild common palm civets, 24 female and 16 male, weighing 1.5-3.4 kg.

    METHODS: The civets were randomly assigned for anesthesia with butorphanol, azaperone and medetomidine (0.6, 0.6 and 0.2 mg kg-1, respectively; group BAM) or with butorphanol, midazolam and medetomidine (0.3, 0.4 and 0.1 mg kg-1, respectively; group BMM) intramuscularly (IM) in a squeeze cage. When adequately relaxed, the trachea was intubated for oxygen administration. Physiological variables were recorded every 5 minutes after intubation. Following morphometric measurements, sampling, microchipping and parasite treatment, medetomidine was reversed with atipamezole at 1.0 or 0.5 mg kg-1 IM to groups BAM and BMM, respectively. Physiological variables and times to reach the different stages of anesthesia were compared between groups.

    RESULTS: Onset time of sedation and recumbency was similar in both groups; time to achieve complete relaxation and tracheal intubation was longer in group BAM. Supplementation with isoflurane was required to enable intubation in five civets in group BAM and one civet in group BMM. All civets in group BAM required topical lidocaine to facilitate intubation. End-tidal carbon dioxide partial pressure was lower in group BAM, but heart rate, respiratory rate, rectal temperature, peripheral hemoglobin oxygen saturation and mean arterial blood pressure were not different. All civets in both groups recovered well following administration of atipamezole.

    CONCLUSIONS AND CLINICAL RELEVANCE: Both BAM and BMM combinations were effective for immobilizing wild common palm civets. The BMM combination had the advantage of producing complete relaxation that allowed intubation more rapidly.

    Matched MeSH terms: Hypnotics and Sedatives/pharmacology
  19. Shehabi Y, Forbes AB, Arabi Y, Bass F, Bellomo R, Kadiman S, et al.
    Crit Care Resusc, 2017 Dec;19(4):318-326.
    PMID: 29202258
    BACKGROUND: Sedation strategy in critically ill patients who are mechanically ventilated is influenced by patient-related factors, choice of sedative agent and the intensity or depth of sedation prescribed. The impact of sedation strategy on outcome, in particular when delivered early after initiation of mechanical ventilation, is uncertain.

    OBJECTIVES: To present the protocol and analysis plan of a large randomised clinical trial investigating the effect of a sedation strategy, in critically ill patients who are mechanically ventilated, based on a protocol targeting light sedation using dexmedetomidine as the primary sedative, termed "early goal-directed sedation", compared with usual practice.

    METHODS: This is a multinational randomised clinical trial in adult intensive care patients expected to require mechanical ventilation for longer than 24 hours. The main exclusion criteria include suspected or proven primary brain pathology or having already been intubated or sedated in an intensive care unit for longer than 12 hours. Randomisation occurs via a secured website with baseline stratification by site and suspected or proven sepsis. The primary outcome is 90-day all-cause mortality. Secondary outcomes include death, institutional dependency, cognitive function and health-related quality of life 180 days after randomisation, as well as deliriumfree, coma-free and ventilation-free days at 28 days after randomisation. A predefined subgroup analysis will also be conducted. Analyses will be on an intention-to-treat basis and in accordance with this pre-specified analysis plan.

    CONCLUSION: SPICE III is an ongoing large scale clinical trial. Once completed, it will inform sedation practice in critically ill patients who are ventilated.

    Matched MeSH terms: Hypnotics and Sedatives/administration & dosage*
  20. Ramanathan R
    Med J Malaysia, 1998 Sep;53 Suppl A:99-101.
    PMID: 10968190
    We studied 95 patients who underwent knee Arthroscopy under local anaesthesia between JANUARY 1995 till 1997. Materials used were 1% Xylocaine and 0.25% Bupivacaine of 20 mls each combined with midazolam 2 mg and IV pethidine 30 mgm for sedation. The patients were attached to monitors (pulse Oxymeter, ECG and BP and pulse recorders) and blood less field was created using a tornquet. The procedures lasted about 45 minutes. 90 out of 95 patients completed the procedures successfully without any complications. 2 developed respiratory embarrassments and were intubated and ventilated. 3 procedures abandoned and converted to general anaesthesia. The range of procedures done include meniscectomy, meniscal repair, synovial biopsy, debridement for osteoarthrosis, shaving of osteophytes, drilling of cartilage and bones and removal of loose bodies. This study is to show that knee arthroscopy under LA is a safe alternative in hospitals where GA time is limited.
    Matched MeSH terms: Hypnotics and Sedatives/adverse effects; Hypnotics and Sedatives/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links