Displaying all 10 publications

Abstract:
Sort:
  1. Taheri S, Asadi S, Nilashi M, Ali Abumalloh R, Ghabban NMA, Mohd Yusuf SY, et al.
    J Trace Elem Med Biol, 2021 Sep;67:126789.
    PMID: 34044222 DOI: 10.1016/j.jtemb.2021.126789
    COVID-19 is a kind of SARS-CoV-2 viral infectious pneumonia. This research aims to perform a bibliometric analysis of the published studies of vitamins and trace elements in the Scopus database with a special focus on COVID-19 disease. To achieve the goal of the study, network and density visualizations were used to introduce an overall picture of the published literature. Following the bibliometric analysis, we discuss the potential benefits of vitamins and trace elements on immune system function and COVID-19, supporting the discussion with evidence from published clinical studies. The previous studies show that D and A vitamins demonstrated a higher potential benefit, while Selenium, Copper, and Zinc were found to have favorable effects on immune modulation in viral respiratory infections among trace elements. The principles of nutrition from the findings of this research could be useful in preventing and treating COVID-19.
    Matched MeSH terms: Immune System/drug effects
  2. Mitra S, Paul S, Roy S, Sutradhar H, Bin Emran T, Nainu F, et al.
    Molecules, 2022 Jan 16;27(2).
    PMID: 35056870 DOI: 10.3390/molecules27020555
    Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
    Matched MeSH terms: Immune System/drug effects
  3. George A, Suzuki N, Abas AB, Mohri K, Utsuyama M, Hirokawa K, et al.
    Phytother Res, 2016 Apr;30(4):627-35.
    PMID: 26816234 DOI: 10.1002/ptr.5571
    This study was aimed to investigate the capacity of a standardized root water extract of Eurycoma longifolia (Tongkat Ali, TA), Physta® to modulate human immunity in a middle-aged Japanese population. This randomized, double-blind, placebo-controlled, parallel study was conducted for 4 weeks. Eighty-four of 126 subjects had relatively lower scores according to Scoring of Immunological Vigor (SIV) screening. Subjects were instructed to ingest either 200 mg/day of TA or rice powder as a placebo for 4 weeks [TA and Placebo (P) groups] and to visit a clinic in Tokyo twice (weeks 0 and 4). SIV, immunological grade, immunological age, and other immune parameters were measured. Eighty-three subjects completed the study; 40 in the TA group and 41 in the P group were statistically analyzed, whereas two were excluded from the analyses. At week 4, the SIV and immunological grade were significantly higher in the TA group than those in P group (p 
    Matched MeSH terms: Immune System/drug effects*
  4. Shariff M, Jayawardena PA, Yusoff FM, Subasinghe R
    Fish Shellfish Immunol, 2001 May;11(4):281-91.
    PMID: 11417716
    This study was to determine the median lethal concentration (LC50) of copper to Javenese carp, Puntius gonionotus (Bleeker), and the immune response after the fish were exposed to sublethal levels of copper and challenged with formalin killed Aeromonas hydrophila. The LC50 of copper on P. gonionotus at 24, 48, 72, 96 and 120 h were estimated as 2.17, 0.91, 0.57, 0.53 and 0.42 mg l(-1), respectively. To determine the effect of copper on the immune system, fish were exposed for 66 days to 0.05, 0.10 and 0.15 mg Cu l(-1). After 56 days of initial exposure to copper, fish were challenged with 0.1 ml of 4.5 x 10(5) cfu ml(-1) formalin killed A. hydrophila and maintained in the same concentration of copper. After the challenge, the immune response was monitored for 2 weeks using haematological and serological assays. During the initial phase of exposure to copper, significant changes were noted in the white blood cell, lysozyme, potential killing activity, total plasma protein, total immunoglobulin and haematocrit levels between the control and treated fish. One week after challenge with A. hydrophila, there was a significant increase in the values of white blood cells, total protein and total immunoglobulin compared to the values before the challenge. However, these values were not significantly different (P>0.05) between the control and the treated fish. In contrast, NBT and lysozyme assays exhibited a significant difference (P<0.05) in fish exposed to 0.10 mg Cu l(-1) (0.525 +/- 0.17; 24.42 +/- 3.35 x 10(2) micromg ml(-1)) and 0.15 mg Cu 1(-1) (0.536 +/- 0.19; 21.78 +/- 1.29 x 10(2) micromg ml(-1)) compared to the control (0.746 +/- 0.31; 30.73 +/- 5.42 x 10(2) micromg ml(-1)) after the bacterial challenge (day 61). There was however no significant difference (P>0.05) in NBT and lysozyme levels in fish exposed to lower level of copper (0.05 mg Cu l(-1)), suggesting the absence of immunosuppressive effects at lower level of exposure.
    Matched MeSH terms: Immune System/drug effects*
  5. Kamis AB, Ahmad RA, Chang JS, Ambu S
    Parasitol Res, 1994;80(1):87-8.
    PMID: 8153134
    Daily intramuscular injection with thyroxine (T4) at a dose of 2.5 micrograms/100 g body weight decreased the larvae and adult worm burden of Parastrongylus malaysiensis in the brain and pulmonary arteries of male Sprague-Dawley albino rats. In contrast, rats treated with propyl thiouracil (PTU), an antithyroid drug, at a dose of 3.75 mg/100 g body weight retained greater numbers of larvae and adult worms. The results may reflect the contrasting immunomodulatory effects of T4 and PTU that influence the susceptibility of the host.
    Matched MeSH terms: Immune System/drug effects
  6. Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB
    Med Microbiol Immunol, 2017 Feb;206(1):1-9.
    PMID: 27704207 DOI: 10.1007/s00430-016-0481-y
    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.
    Matched MeSH terms: Immune System/drug effects*
  7. Haque MA, Jantan I, Abbas Bukhari SN
    J Ethnopharmacol, 2017 Jul 31;207:67-85.
    PMID: 28629816 DOI: 10.1016/j.jep.2017.06.013
    ETHNOPHARMACOLOGICAL RELEVANCE: Studies on the effects of natural immunomodulators to heal various diseases related to the immune system have been a growing interest in recent years. Amongst the medicinal plants, Tinospora species (family; Menispermaceae) have been one of the widely investigated plants for their modulating effects on the immune system due to their wide use in ethnomedicine to treat various ailments related to immune-related diseases. However, their ethnopharmacological uses are mainly with limited or without scientific basis.

    AIM OF THIS REVIEW: In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements.

    MATERIALS AND METHODS: Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages.

    RESULTS: T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation.

    CONCLUSION: The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials.

    Matched MeSH terms: Immune System/drug effects
  8. Lee JS, Bukhari SN, Fauzi NM
    Drug Des Devel Ther, 2015;9:4761-78.
    PMID: 26316713 DOI: 10.2147/DDDT.S86242
    The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells.
    Matched MeSH terms: Immune System/drug effects*
  9. Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW
    Clinics (Sao Paulo), 2019 03 07;74:e688.
    PMID: 30864639 DOI: 10.6061/clinics/2019/e688
    OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.

    METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.

    RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.

    CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

    Matched MeSH terms: Immune System/drug effects
  10. Odhaib KJ, Adeyemi KD, Ahmed MA, Jahromi MF, Jusoh S, Samsudin AA, et al.
    Trop Anim Health Prod, 2018 Jun;50(5):1011-1023.
    PMID: 29654500 DOI: 10.1007/s11250-018-1525-7
    The objective of this study was to determine the effects of dietary supplementation of Nigella sativa L. seeds, Rosmarinus officinalis L. leaves and their combination on rumen metabolism, nutrient intake and digestibility, growth performance, immune response and blood metabolites in Dorper lambs. Twenty-four entire male Dorper lambs (18.68 ± 0.6 kg, 4-5 months old) were randomly assigned to a concentrate mixture containing on a dry matter basis either, no supplement (control, T1), 1% R. officinalis leaves (T2), 1% N. sativa seeds (T3) or 1% R. officinalis leaves +1% N. sativa seeds (T4). The lambs had ad libitum access to urea-treated rice straw (UTRS) and were raised for 90 days. Supplemented lambs had greater (P 
    Matched MeSH terms: Immune System/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links