Displaying publications 1 - 20 of 262 in total

  1. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
    Matched MeSH terms: Industrial Waste*
  2. Mohammed JN, Wan Dagang WRZ
    Water Sci Technol, 2019 Nov;80(10):1807-1822.
    PMID: 32144213 DOI: 10.2166/wst.2020.025
    The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
    Matched MeSH terms: Industrial Waste*
  3. Bello MM, Abdul Raman AA
    J Environ Manage, 2017 Aug 01;198(Pt 1):170-182.
    PMID: 28460324 DOI: 10.1016/j.jenvman.2017.04.050
    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges.
    Matched MeSH terms: Industrial Waste*
  4. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
    Matched MeSH terms: Industrial Waste*
  5. Khadaroo SNBA, Grassia P, Gouwanda D, Poh PE
    J Environ Manage, 2020 Mar 01;257:109996.
    PMID: 31868647 DOI: 10.1016/j.jenvman.2019.109996
    An alternative method was proposed to optimize the treatment process of palm oil mill effluent (POME) in an effort to address the poor removal efficiencies in terms of the chemical and biological oxygen demand (COD and BOD), total suspended solids (TSS) as well as oil and grease (O&G) content in treated POME along with many environmental issues associated with the existing POME treatment process. The elimination of the cooling ponds and the insertion of a dewatering device in the treatment process were recommended. The dewatering device should enhance the anaerobic digestion process by conferring a means of control on the digesters' load. The objective of this study is to identify the optimum solid: liquid ratio (total solids (TS) content) that would generate the maximum amount of biogas with better methane purity consistently throughout the anaerobic digestion of POME, all while improving the treated effluent quality. It was established that a 40S:60L (4.02% TS) was the best performing solid loading in terms of biogas production and methane yield as well as COD, BOD, TSS, and O&G removal efficiencies. Meanwhile, at higher solid loadings, the biogas production is inhibited due to poor transport and mass transfer. It is also speculated that sulfate-reducing bacteria tended to inhibit the biogas production based on the significantly elevated H2S concentration recorded for the 75S:25L and the 100S loadings.
    Matched MeSH terms: Industrial Waste*
  6. Rupani PF, Alkarkhi AFM, Shahadat M, Embrandiri A, El-Mesery HS, Wang H, et al.
    PMID: 31200470 DOI: 10.3390/ijerph16122092
    The present study reports mathematical modelling of palm oil mill effluent and palm-pressed fiber mixtures (0% to 100%) during vermicomposting process. The effects of different mixtures with respect to pH, C:N ratio and earthworms have been optimized using the modelling parameters. The results of analysis of variance have established effect of different mixtures of palm oil mill effluent plus palm press fiber and time, under selected physicochemical responses (pH, C:N ratio and earthworm numbers). Among all mixtures, 60% mixture was achieved optimal growth at pH 7.1 using 16.29 C:N ratio in 15 days of vermicomposting. The relationship between responses, time and different palm oil mill waste mixtures have been summarized in terms of regression models. The obtained results of mathematical modeling suggest that these findings have potential to serve a platform for further studies in terms of kinetic behavior and degradation of the biowastes via vermicomposting.
    Matched MeSH terms: Industrial Waste*
  7. Mukherjee S, Mukhopadhyay S, Pariatamby A, Ali Hashim M, Sahu JN, Sen Gupta B
    J Environ Sci (China), 2014 Sep 1;26(9):1851-60.
    PMID: 25193834 DOI: 10.1016/j.jes.2014.06.029
    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
    Matched MeSH terms: Industrial Waste*
  8. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2014;2014:506356.
    PMID: 25032229 DOI: 10.1155/2014/506356
    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.
    Matched MeSH terms: Industrial Waste*
  9. Teo PT, Anasyida AS, Basu P, Nurulakmal MS
    Waste Manag, 2014 Dec;34(12):2697-708.
    PMID: 25242607 DOI: 10.1016/j.wasman.2014.08.015
    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.
    Matched MeSH terms: Industrial Waste/analysis*
  10. Din MF, Mohanadoss P, Ujang Z, van Loosdrecht M, Yunus SM, Chelliapan S, et al.
    Bioresour Technol, 2012 Nov;124:208-16.
    PMID: 22989648 DOI: 10.1016/j.biortech.2012.08.036
    High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min. The PHA yield was found to be 0.80 C-mol/C-mol acetic acid (HAc) at microaerophilic condition and the mass balance calculation showed that PHA production increased up to 15.68±2.15 C-mmol/cycle. The experiments showed that short feeding rate, limited requirements for electron acceptors (e.g. O(2), NO(3)) and nutrients (N and P) showed lower tendency of glycogen accumulation and contributed more to PHA productivity.
    Matched MeSH terms: Industrial Waste*
  11. Isa MH, Ibrahim N, Aziz HA, Adlan MN, Sabiani NH, Zinatizadeh AA, et al.
    J Hazard Mater, 2008 Apr 1;152(2):662-8.
    PMID: 17714862
    This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.
    Matched MeSH terms: Industrial Waste*
  12. Salmiaton A, Garforth A
    Waste Manag, 2007;27(12):1891-6.
    PMID: 17084608
    Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.
    Matched MeSH terms: Industrial Waste*
  13. Noor MJ, Muyibi SA, Ahmed T, Ghazall AH, Jusoh A, Idris A, et al.
    Water Sci Technol, 2002;46(9):331-8.
    PMID: 12448486
    A laboratory study was conducted on an Extended Aeration-Microfiltration (EAM) reactor in treating a food industry wastewater. The reactor contained horizontally laid hollow fibre microfiltration (MF) units that were fully submerged. The MF units were connected to a peristaltic pump that was used to extract permeate continuously under suction pressure. Continuous aeration from beneath the modules provided the crossflow effect to the MF units. Active activated sludge was used in the start-up where the sludge was mixed together with the feed water at a Food/Microorganisms (F/M) value of about 0.1. Primary effluent with Chemical Oxygen Demand (COD) values ranged between 1,500 and 3,000 mg/l was used as feed water. The EAM reactor was operated for nearly three months without initiating cleaning of the MF units. A suction pressure of 0.9 bar and Mixed Liquor Suspended Solids (MLSS) of over 5,500 mg/l were reached when nearing the end of the three month operation period. Permeate COD and turbidity reduction of over 97% and 99% respectively, were achieved. Prior to this, the MF module arrangements were studied; where vertically arranged modules were found to perform poorly as compared to the horizontally laid modules, in terms of clean water permeate flux.
    Matched MeSH terms: Industrial Waste*
  14. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Ismail SA, et al.
    Environ Sci Pollut Res Int, 2017 May;24(14):12982-12990.
    PMID: 28378309 DOI: 10.1007/s11356-017-8938-0
    The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day(-1)). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.
    Matched MeSH terms: Industrial Waste*
  15. Cheok CY, Mohd Adzahan N, Abdul Rahman R, Zainal Abedin NH, Hussain N, Sulaiman R, et al.
    Crit Rev Food Sci Nutr, 2018 Feb 11;58(3):335-361.
    PMID: 27246698 DOI: 10.1080/10408398.2016.1176009
    Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
    Matched MeSH terms: Industrial Waste/analysis*
  16. Bashir MJK, Wei CJ, Aun NC, Abu Amr SS
    J Environ Manage, 2017 May 15;193:458-469.
    PMID: 28262420 DOI: 10.1016/j.jenvman.2017.02.031
    Malaysia alone produces more than 49 million m3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value 
    Matched MeSH terms: Industrial Waste*
  17. Kusin FM, Hasan SNMS, Hassim MA, Molahid VLM
    Environ Sci Pollut Res Int, 2020 Apr;27(11):12767-12780.
    PMID: 32008190 DOI: 10.1007/s11356-020-07877-3
    This study highlights the importance of mineralogical composition for potential carbon dioxide (CO2) capture and storage of mine waste materials. In particular, this study attempts to evaluate the role of mineral carbonation of sedimentary mine waste and their potential reutilization as supplementary cementitious material (SCM). Limestone and gold mine wastes were recovered from mine processing sites for their use as SCM in brick-making and for evaluation of potential carbon sequestration. Dominant minerals in the limestone mine waste were calcite and akermanite (calcium silicate) while the gold mine waste was dominated by illite (iron silicate) and chlorite-serpentine (magnesium silicate). Calcium oxide, CaO and silica, SiO2, were the highest composition in the limestone and gold mine waste, respectively, with maximum CO2 storage of between 7.17 and 61.37%. Greater potential for CO2 capture was observed for limestone mine waste as due to higher CaO content alongside magnesium oxide. Mineral carbonation of the limestone mine waste was accelerated at smaller particle size of
    Matched MeSH terms: Industrial Waste/analysis
  18. Hashiguchi Y, Zakaria MR, Toshinari M, Mohd Yusoff MZ, Shirai Y, Hassan MA
    Environ Pollut, 2021 May 15;277:116780.
    PMID: 33640825 DOI: 10.1016/j.envpol.2021.116780
    Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10-0.32 mg/L, 0.01-0.99 mg/L, and 0.94-4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
    Matched MeSH terms: Industrial Waste/analysis
  19. Yaacof N, Qamaruz Zaman N, Yusup Y, Yusoff S
    Environ Sci Pollut Res Int, 2019 Aug;26(23):24286-24299.
    PMID: 31214886 DOI: 10.1007/s11356-019-05517-z
    Malaysia is the second-largest producer and exporter of palm oil amounting to 39% of world palm oil production and 44% of world exports (MPOB, 2014). An enormous amount of palm oil mill effluent is released during palm oil milling, and the effluent causes a major odor problem. Many methods, such as biofiltering, can be adopted to manage the malodor. However, these methods are expensive and require high maintenance. The separation distance method can be used as an alternative due to its low cost and effectiveness. This research was conducted to verify the performance of three different methods, namely, in-field monitoring by using an olfactometer, CALPUFF model, and Gaussian plume model. Given that no research has compared the three methods, this study examined the effectiveness of the methods and determined which among them is suitable for use in Malaysia. The appropriate separation distances were 1.3 km for in-field monitoring, 1.2 km for the CALPUFF model, and 0.5 for the Gaussian plume model. These different values of separation distance were due to the various approaches involved in each method. This research determined an appropriate means to establish a proper separation distance for reducing odor nuisance in areas around palm oil mills.
    Matched MeSH terms: Industrial Waste/analysis*
  20. Latif MA, Ghufran R, Wahid ZA, Ahmad A
    Water Res, 2011 Oct 15;45(16):4683-99.
    PMID: 21764417 DOI: 10.1016/j.watres.2011.05.049
    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.
    Matched MeSH terms: Industrial Waste*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links