In a short period of two months, the novel influenza A/H1N1 virus has circumnavigated the entire planet leaving behind in its wake approximately 3000 reported deaths worldwide. Fortunately, in many areas around the world, September 2009 brought a lull in the number of new H1N1 infections. This brought welcomed relief in many countries that had earlier experienced high respiratory disease activity in their communities. However, based on previous influenza pandemics, this reprieve may well be short-lived. As the Northern hemisphere approaches its winter months, many experts are now predicting a second wave of influenza A/H1N1 infections. This prediction maybe well placed as all 3 influenza pandemics in the last century reported second or even subsequent waves of new infections, all of which appeared to be more severe than the primary event (ref). The timing of these second waves have varied from 6 months to 3 years and invariably seemed to be linked to the winter months. It is unclear precisely what changes caused the increased severity seen during the second waves; one possibility is the progressive adaptation of the novel influenza virus to its new human host . Molecular analysis, for example, suggests that the 1918 Spanish influenza virus that emerged during the second wave had undergone changes in the hemagglutinin binding site that increased the binding specificity for human receptors. This is thought to have increased the replicative capacity and hence, the pathogenicity of the virus. It is also evident that as the H1N1 2009 pandemic virus continues to spread, opportunities for adaptation that increases virulence will also increase. Nonetheless, the changes needed for such adaptation and for increased virulence are unpredictable and by no means inevitable
Despite the established benefit of intramuscular (i.m.) influenza vaccination, new adjuvants and delivery methods for comparable or improved immunogenicity are being explored. Intradermal (i.d.) antigen administration is hypothesized to initiate an efficient immune response at reduced antigen doses similar to that observed after i.m. full dose vaccination.
The influenza epidemic of 2006/'07 began late in the season, like the two previous influenza epidemics. In week 8 a peak of modest height was reached. As usual, the causal strains were mainly A/H3N2 viruses and to a lesser extent A/H1N1 and B viruses. A new A/H1N1 virus variant has emerged, an event that on average takes place only every 10 years. However, almost all A/H1N1 virus isolates belonged to the old variant and were similar to the vaccine virus. The A/H3N2 virus isolates appeared to deviate from the vaccine strain, but after antigenic cartographic analysis and correction for low avidity they proved also closely related to the vaccine strain. The few type B virus isolates belonged to the B/Yamagata/16/88 lineage, whereas the used B vaccine virus had been chosen from the B/Victoria/2/87 lineage. The vaccine therefore will have provided almost optimal protection against the circulating influenza A/H1N1 and A/H3N2 viruses but not against the influenza B viruses. For the 2007/'08 influenza season the World Health Organization has recommended the following vaccine composition: A/Solomon Islands/3/06 (H1N1) (new), A/Wisconsin/67/05 (H3N2), and B/Malaysia/2506/04.
Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.
Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
To evaluate humoral immune response to influenza vaccine and polysaccharide pneumococcal vaccine in patients with rheumatoid arthritis (RA) or Castleman's disease (CD) during tocilizumab therapy.
Two phylogenetic lineages of influenza B virus coexist and circulate in the human population (B/Yamagata and B/Victoria) but only one B-strain is included in each seasonal vaccine. Mismatch regularly occurs between the recommended and circulating B-strain. Inclusion of both lineages in vaccines may offer better protection against influenza.
The effectiveness of influenza vaccination in preventing illness is lower in the elderly; this is why the ability of Lactobacillus plantarum CECT 7315/7316 to stimulate the response to influenza vaccination in elderly was evaluated.
Influenza vaccine provides protection against infection with matched strains, and this protection correlates with serum antibody titres. In addition to antibodies, influenza-specific CD8+ T-lymphocyte responses are important in decreasing disease severity and facilitating viral clearance. Because this response is directed at internal, relatively conserved antigens, it affords some cross-protection within a given subtype of influenza virus. With the possibility of a broader A(H1N1) Mexico outbreak in the fall of 2009, it appeared worthwhile studying the degree of cellular immune response-mediated cross-reactivity among influenza virus isolates. The composition of the 2006-2007 influenza vaccine included the A/New Caledonia/20/1999 strain (comprising a virus that has been circulating, and was included in vaccine preparations, for 6-7 years) and two strains not previously included (Wisconsin and Malaysia). This combination afforded us the opportunity to determine the degree of cross-reactive cellular immunity after exposure to new viral strains. We analysed the antibody responses and the phenotype and function of the T cell response to vaccine components. The results obtained show that antibody responses to A/New-Caledonia were already high and vaccination did not increase antibody or cytotoxic T lymphocyte responses. These data suggest that repeated exposure to the same influenza stain results in limited boosting of humoral and cellular immune responses.
In the present study, we used nucleotide and protein sequences of avian influenza virus H5N1, which were obtained in Asia and Africa, analyzed HA proteins using ClustalX1.83 and MEGA4.0, and built a genetic evolutionary tree of HA nucleotides. The analysis revealed that the receptor specificity amino acid of A/HK/213/2003, A/Turkey/65596/2006 and etc mutated into QNG, which could bind with á-2, 3 galactose and á-2, 6 galactose. A mutation might thus take place and lead to an outbreak of human infections of avian influenza virus. The mutations of HA protein amino acids from 2004 to 2009 coincided with human infections provided by the World Health Organization, indicating a "low-high-highest-high-low" pattern. We also found out that virus strains in Asia are from different origins: strains from Southeast Asia and East Asia are of the same origin, whereas those from West Asia, South Asia and Africa descend from one ancestor. The composition of the phylogenetic tree and mutations of key site amino acids in HA proteins reflected the fact that the majority of strains are regional and long term, and virus diffusions exist between China, Laos, Malaysia, Indonesia, Azerbaijan, Turkey and Iraq. We would advise that pertinent vaccines be developed and due attention be paid to the spread of viruses between neighboring countries and the dangers of virus mutation and evolution.
BACKGROUND: Assessment of general public's knowledge and attitudes toward the development and prevention of new disease outbreaks is imperative because they have profound effects on health behaviors and may contribute to the control of the epidemic.
PURPOSE: To investigate the level of knowledge and attitudes towards the influenza A(H1N1) outbreak across various ethnic groups and socio-demographic backgrounds in Malaysia.
METHOD: A cross-sectional, population-based, computer-assisted telephone interview exploring knowledge and attitudes regarding influenza A(H1N1) was conducted in Malaysia. Between July 11 and September 12, 2009, a total of 1,050 respondents were interviewed (response rate 69.3%).
RESULTS: The mean total knowledge score for the overall sample was 7.30 (SD ± 1.961) out of a possible score of 13 (Chinese had the highest scores, followed by Indians, then Malays). Some erroneous beliefs about the modes of transmission were identified. The majority of the participants (73.8%) perceived the A(H1N1) infection as often deadly. Despite the overestimation of the severity of A(H1N1) infection, high confidence in preventing infection and low perceived susceptibility of infection were reported. Influenza A(H1N1)-related stigma was prevalent and exhibited differences across ethnic groups.
CONCLUSIONS: Findings suggest that provision of education and clear information are essential to correct the misconceptions, and increase perceived susceptibility to infection so that the general public will take precautions against A(H1N1) infection.
To determine influenza vaccine effectiveness against clinically defined influenza-like illness among Malaysian pilgrims attending the Haj in Saudi Arabia.
Data on the immunogenicity of the influenza vaccine in children after liver transplantation are sparse. Our study aims to evaluate the response of such patients to the trivalent influenza vaccine, administered by different protocols in 2 influenza seasons.
National immunization program of Pakistan does not include Influenza vaccines. The low rate of immunization might be attributed to the poor knowledge of influenza vaccination in Pakistan. Current study was aimed to assess the knowledge and attitude of influenza vaccination among parents. A questionnaire-based cross sectional study was conducted among randomly selected parents with at least one child aged >6 months. The responses were recorded against 27 items questionnaire assessing knowledge, perception, attitude and behaviours of parents. Data were analysed by using appropriate statistical methods. A total 532 responses were recorded with male gender preponderance (65%). Most of the parents (61.1%) reported that their children had received or planned to receive all recommended vaccines in Expanded Program on Immunization (EPI) of Pakistan. Only one third of the parents (24.4%) were aware of the availability of influenza vaccines in Pakistan, and very few (6.6%) reported vaccinating their child against influenza. Exploring the parents' attitudes regarding children vaccination, the top motivator was 'immunization is important to keep my children healthy' (relative index = 0.93, p < 0.000). However, substantial number of parents believed that influenza is not a serious disease (18.5%) and vaccines are accompanied by several side effects (24.6%). A positive attitude was reflected among parents who were aware of influenza vaccines in Pakistan. About 35% participants believed that influenza vaccines are not required for healthy children. Current study demonstrated very low vaccination rate against influenza. Awareness and health literacy regarding influenza vaccine is poor among parents. These findings necessitate the need to appropriately structured awareness programs regarding influenza vaccination among parents.
The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine.
Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.
This study evaluated whether MF59-adjuvanted subunit trivalent influenza vaccine for the 2003/04 winter season (A/Moscow/10/99, H3N2; A/New Caledonia/20/99, H1N1; B/Hong Kong/330/01) would confer protection against mismatched and frequently co-circulating variants of influenza B/Victoria- and B/Yamagata-like virus strains. Haemagglutination inhibiting (HI) antibodies were measured in middle-aged and elderly volunteers against the homologous B/Victoria-like vaccine strain (B/Hong Kong/330/01) and against mismatched B/Victoria-like (B/Malaysia/2506/04) and B/Yamagata-like (B/Singapore/379/99 and B/Shanghai/361/02) strains. Immunization induced significant increases in the amounts of HI antibodies against all influenza B strains under investigation. However, the responses against the heterologous B/Shanghai/361/02 virus did not reach the desirable values of seroprotection. An age-dependent decline of the responses was found for B/Victoria-like antigens, but not for B/Yamagata-like strains. Although further studies are needed, our data support the recommendation of including influenza B viruses of the B/Victoria and B/Yamagata lineages in the future influenza vaccine preparations.
Children aged 11 to <24 months received 2 intranasal doses of live attenuated influenza vaccine (LAIV) or placebo, 35+/-7 days apart. Dose 1 was administered concomitantly with a combined measles, mumps, and rubella vaccine (Priorix). Seroresponses to measles and mumps were similar between groups. Compared with placebo, response rates to rubella in LAIV+Priorix recipients were statistically lower at a 15 IU/mL threshold (83.9% vs 78.0%) and the prespecified noninferiority criteria were not met. In a post hoc analysis using an alternate widely accepted threshold of 10 IU/mL, the noninferiority criteria were met (93.4% vs 89.8%). Concomitant administration with Priorix did not affect the overall influenza protection rate of LAIV (78.4% and 63.8% against antigenically similar influenza strains and any strain, respectively).
A series of plasmids containing the HSP70 gene of Mycobacterium tuberculosis fused to the hemagglutinin (H5) gene of H5N1 avian influenza virus (AIV) (H5-HSP70 (heat shock protein 70) vaccine) or individual H5 gene (H5 vaccine) or HSP70 gene (HSP70 vaccine) were constructed based on the plasmid pcDNA3.1. Expression of H5 gene in Vero cells in vitro and in chickens in vivo was confirmed following their transfection and immunization with H5 or H5-HSP70 vaccines. Controls consisted of HSP70 vaccine, empty plasmid pcDNA3.1 and co-administered H5 and HSP70 vaccines. H5-HSP70 vaccine produced in chicken higher hemagglutination inhibition (HI) antibody titer than H5 vaccine. However, the increase was not statistically significant. We have demonstrated for the first time that the H5 DNA vaccine with fused HSP70 gene may produce an enhanced induction of humoral immune response to AIV in chickens.