Displaying all 11 publications

Abstract:
Sort:
  1. Jaddi NS, Abdullah S
    PLoS One, 2019;14(1):e0208308.
    PMID: 30608936 DOI: 10.1371/journal.pone.0208308
    Optimization of an artificial neural network model through the use of optimization algorithms is the common method employed to search for an optimum solution for a broad variety of real-world problems. One such optimization algorithm is the kidney-inspired algorithm (KA) which has recently been proposed in the literature. The algorithm mimics the four processes performed by the kidneys: filtration, reabsorption, secretion, and excretion. However, a human with reduced kidney function needs to undergo additional treatment to improve kidney performance. In the medical field, the glomerular filtration rate (GFR) test is used to check the health of kidneys. The test estimates the amount of blood that passes through the glomeruli each minute. In this paper, we mimic this kidney function test and the GFR result is used to select a suitable step to add to the basic KA process. This novel imitation is designed for both minimization and maximization problems. In the proposed method, depends on GFR test result which is less than 15 or falls between 15 and 60 or is more than 60 a particular action is performed. These additional processes are applied as required with the aim of improving exploration of the search space and increasing the likelihood of the KA finding the optimum solution. The proposed method is tested on test functions and its results are compared with those of the basic KA. Its performance on benchmark classification and time series prediction problems is also examined and compared with that of other available methods in the literature. In addition, the proposed method is applied to a real-world water quality prediction problem. The statistical analysis of all these applications showed that the proposed method had a ability to improve the optimization outcome.
    Matched MeSH terms: Kidney/physiology*
  2. Cooper DJ, Grigg MJ, Plewes K, Rajahram GS, Piera KA, William T, et al.
    Clin Infect Dis, 2022 Oct 12;75(8):1379-1388.
    PMID: 35180298 DOI: 10.1093/cid/ciac152
    BACKGROUND: Acetaminophen inhibits cell-free hemoglobin-induced lipid peroxidation and improves renal function in severe falciparum malaria but has not been evaluated in other infections with prominent hemolysis, including Plasmodium knowlesi malaria.

    METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis.

    RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively).

    CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis.

    CLINICAL TRIALS REGISTRATION: NCT03056391.

    Matched MeSH terms: Kidney/physiology
  3. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Hussain FB, Hye Khan MA, et al.
    Indian J Med Res, 2010 Jan;131:76-82.
    PMID: 20167977
    Regulation of renal function and haemodynamics are under a direct control from the renal sympathetic nerves and renal denervation produces overt diuresis and natriuresis in several mammalian species. However, the inter-related series of changes in renal function and haemodynamics following acute renal denervation (ARD) is not fully understood. Thus, we aimed to investigate and relate the changes in renal function and haemodynamics following acute unilateral renal denervation in anaesthetized Sprague Dawley (SD) rats.
    Matched MeSH terms: Kidney/physiology
  4. WHITTOW GC
    Med J Malaya, 1956 Dec;11(2):126-33.
    PMID: 13417936
    Matched MeSH terms: Kidney/physiology*
  5. Khan SA, Sattar MA, Rathore HA, Abdulla MH, Ud Din Ahmad F, Ahmad A, et al.
    Acta Physiol (Oxf), 2014 Mar;210(3):690-700.
    PMID: 24438102 DOI: 10.1111/apha.12237
    There is evidence that in chronic renal failure, the sympathetic nervous system is activated. This study investigated the role of the renal innervation in suppressing high- and low-pressure baroreflex control of renal sympathetic nerve activity and heart rate in cisplatin-induced renal failure.
    Matched MeSH terms: Kidney/physiology*
  6. bin Long I, Singh HJ, Rao GJ
    J. Pharmacol. Sci., 2005 Nov;99(3):272-6.
    PMID: 16293937
    The effects of indomethacin and nabumetone on urine and electrolyte excretion in conscious rats were examined. Male Sprague-Dawley rats were housed individually for a five-week duration, consisting of acclimatization, control, experimental, and recovery phases. During the experimental phase, rats were given either indomethacin (1.5 mg . kg(-1) body weight . day(-1) in 0.5 ml saline, n = 10), nabumetone (15 mg . kg(-1) body weight . day(-1) 0.5 ml saline, n = 10), or 0.5 ml saline alone (n = 10) for a period of two weeks. Water and food intake, body weight, urine output, and electrolyte excretions were estimated. Data were analyzed using two-way ANOVA. Urine output in the indomethacin- and nabumetone-treated groups was not different from the controls, but was significantly different between the drug-treated groups (P<0.01). Sodium, potassium, calcium, and magnesium excretions were not different between nabumetone-treated and control rats. However, sodium and potassium excretion was significantly lower in rats receiving indomethacin when compared to the control rats. Calcium and magnesium outputs, although did not differ from the controls, nevertheless decreased significantly with indomethacin (P<0.01). It appears that indomethacin and nabumetone when given at maximum human therapeutic doses may affect urine and electrolyte output in conscious rats.
    Matched MeSH terms: Kidney/physiology
  7. Salman M, Khan AH, Adnan AS, Sulaiman SA, Hussain K, Shehzadi N, et al.
    Rev Assoc Med Bras (1992), 2016 Nov;62(8):742-747.
    PMID: 27992014 DOI: 10.1590/1806-9282.62.08.742
    Objective:: Anemia, a common complication of chronic kidney diseases (CKD), is involved in significant cardiovascular morbidity. Therefore, the objective of our study was to investigate the prevalence and severity of anemia in pre-dialysis patients, as well as to determine the predictors of anti-anemic therapy.

    Method:: A retrospective, observational study was conducted on adult pre-dialysis patients receiving treatment at the Hospital Universiti Sains Malaysia from January 2009 to December 2013.

    Results:: A total of 615 eligible cases were included. The mean age of patients was 64.1±12.0 years. The prevalence of anemia was 75.8%, and the severity of anemia was mild in 47.7% of the patients, moderate in 32.2%, and severe in 20%. Based on morphological classification of anemia, 76.9% of our patients had normochromic-normocytic anemia whereas 21.8 and 1.3% had hypochromic-microcytic anemia and macrocytic anemia, respectively. Oral iron supplements were prescribed to 38.0% of the patients and none of the patients was given erythropoietin stabilizing agents (ESA) or intravenous iron preparations. In logistic regression, significant predictors of anti-anemic preparation use were decreased hemoglobin and hematocrit, and advanced stages of CKD.

    Conclusion:: The results of the present study suggest that the prevalence of anemia in pre-dialysis patients is higher than currently accepted and it is found to be correlated with renal function; prevalence increases with declined renal function. An earlier identification as well as appropriate management of anemia will not only have a positive impact on quality of life but also reduce hospitalizations of CKD patients due to cardiovascular events.

    Matched MeSH terms: Kidney/physiology*
  8. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
    Matched MeSH terms: Kidney/physiology
  9. Abdulla MH, Sattar MA, Salman IM, Abdullah NA, Ameer OZ, Khan MA, et al.
    Auton Autacoid Pharmacol, 2008 Apr-Jul;28(2-3):87-94.
    PMID: 18598290 DOI: 10.1111/j.1474-8673.2008.00421.x
    1 This study was undertaken to characterize the renal responses to acute unilateral renal denervation in anaesthetized spontaneously hypertensive rats (SHR) by examining the effect of acute unilateral renal denervation on the renal hemodynamic responses to a set of vasoactive agents and renal nerve stimulation. 2 Twenty-four male SHR rats underwent acute unilateral renal denervation and the denervation was confirmed by significant drop (P < 0.05) in renal vasoconstrictor response to renal nerve stimulation along with marked diuresis and natriuresis following denervation. After 7 days treatment with losartan, the overnight fasted rats were anaesthetized (sodium pentobarbitone, 60 mg kg(-1) i.p.) and renal vasoconstrictor experiments were performed. The changes in the renal vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine, methoxamine and angiotensin II. 3 The data showed that there was significantly (all P < 0.05) increased renal vascular responsiveness to the vasoactive agents in denervated rats compared to those with intact renal nerves. In losartan-treated denervated SHR rats, there were significant (all P < 0.05) reductions in the renal vasoconstrictor responses to neural stimuli and vasoactive agents as compared with that of untreated denervated SHR rats. 4 The data obtained in denervated rats suggested an enhanced sensitivity of the alpha(1)-adrenoceptors to adrenergic agonists and possible increase of AT(1) receptors functionality in the renal vasculature of these rats. These data also suggested a possible interaction between sympathetic nervous system and renin-angiotensin system in terms of a crosstalk relationship between renal AT(1) and alpha(1)-adrenoceptor subtypes.
    Matched MeSH terms: Kidney/physiology*
  10. Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MA, Arulselvan P
    Molecules, 2013 Jan 04;18(1):666-81.
    PMID: 23292329 DOI: 10.3390/molecules18010666
    Mitragynine (MG) is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt) combined with morphine (5 mg/kg b.wt) respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP) and cAMP response element binding (CREB) was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05) increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05) in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.
    Matched MeSH terms: Kidney/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links