Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Hopkins HO
    Matched MeSH terms: Malaria/diagnosis
  2. Rajahram GS, Barber BE, Yeo TW, Tan WW, William T
    Med J Malaysia, 2013;68(1):71-2.
    PMID: 23466773 MyJurnal
    Matched MeSH terms: Malaria/diagnosis
  3. Zen LPY, Lai MY, Lau YL
    Trop Biomed, 2020 Dec 01;37(4):1124-1128.
    PMID: 33612764 DOI: 10.47665/tb.37.4.1124
    The LAMP assay, amplifies the target DNA rapidly, with 10-fold greater sensitivity than conventional PCR. The greater sensitivity also comes with greater risks of contamination. To overcome this issue, the current project includes either uracil DNA glycosylase (UDG) or a mineral oil overlay in the LAMP assay. Our results indicated that UDG or a mineral oil overlay can effectively prevent carryover contamination in the LAMP assay for the detection of human malaria. By incorporating these preventative methods, contamination can be eliminated and LAMP can potentially be used in the field; and point of care diagnosis for human malaria.
    Matched MeSH terms: Malaria/diagnosis*
  4. Thomas V, Leng YP
    Med J Malaysia, 1977 Mar;31(3):204-7.
    PMID: 333246
    Matched MeSH terms: Malaria/diagnosis*
  5. Singh B, Daneshvar C
    Med J Malaysia, 2010 Sep;65(3):166-72.
    PMID: 21939162 MyJurnal
    Plasmodium knowlesi, a simian malaria parasite, is now recognised as the fifth cause of human malaria and can lead to fatal infections in humans. Knowlesi malaria cases are widely distributed in East and West Malaysia and account for more than 50% of admissions for malaria in certain hospitals in the state of Sarawak. This paper will begin with a description of the early studies on P. knowlesi, followed by a review of the epidemiology, diagnosis, clinical and laboratory features, and treatment of knowlesi malaria.
    Matched MeSH terms: Malaria/diagnosis
  6. Lee CE, Adeeba K, Freigang G
    Med J Malaysia, 2010 Mar;65(1):63-5.
    PMID: 21265252
    We report seven cases of naturally acquired human Plasmodium knowlesi infections which were admitted to our centre from July 2007 till June 2008. Diagnosis was confirmed by nested PCR. Cases of P. knowlesi infections, dubbed the fifth type of human malaria, have been reported in East Malaysia (Sabah and Sarawak) as well as in the state of Pahang in Peninsula Malaysia. These seven patients appear to be the first few reported cases of P. knowlesi infection in the Klang valley, Peninsula Malaysia. We then discuss the characteristics of human P. knowlesi infections, which include its natural hosts, responsible vectors, clinical presentation, and the treatment of such infections.
    Matched MeSH terms: Malaria/diagnosis*
  7. Amir A, Russell B, Liew JW, Moon RW, Fong MY, Vythilingam I, et al.
    Sci Rep, 2016 Apr 21;6:24623.
    PMID: 27097521 DOI: 10.1038/srep24623
    Plasmodium knowlesi is extensively used as an important malaria model and is now recognized as an important cause of human malaria in Malaysia. The strains of P. knowlesi currently used for research were isolated many decades ago, raising concerns that they might no longer be representative of contemporary parasite populations. We derived a new P. knowlesi line (University Malaya line, UM01), from a patient admitted in Kuala Lumpur, Malaysia, and compared it with a human-adapted laboratory line (A1-H.1) derived from the P. knowlesi H strain. The UM01 and A1-H.1 lines readily invade human and macaque (Macaca fascicularis) normocytes with a preference for reticulocytes. Whereas invasion of human red blood cells was dependent on the presence of the Duffy antigen/receptor for chemokines (DARC) for both parasite lines, this was not the case for macaque red blood cells. Nonetheless, differences in invasion efficiency, gametocyte production and the length of the asexual cycle were noted between the two lines. It would be judicious to isolate and characterise numerous P. knowlesi lines for use in future experimental investigations of this zoonotic species.
    Matched MeSH terms: Malaria/diagnosis
  8. Normaznah Y, Furuta T, Saniah K, Noor Rain A, Kojima S, Mak JW
    PMID: 9444035
    Matched MeSH terms: Malaria/diagnosis*
  9. Sidhu PS, Ng SC
    Ann Acad Med Singap, 1991 May;20(3):324-7.
    PMID: 1929172
    The case records of 64 patients with malaria over a five year period admitted to the University Hospital, Kuala Lumpur were examined. There were 32 cases of P. falciparum, 26 cases of P. vivax and two cases of mixed infections. Four cases of P. malariae were recorded. The clinical findings, biochemical and haematological parameters were examined for any indication of a pernicious syndrome. A high index of suspicion of a malarial infection may be based on the findings of anaemia, thrombocytopaenia, hyponatraemia, renal failure and abnormal liver function tests in the face of a negative blood film. These pernicious syndromes occur more often in malignant tertian malaria (anaemia 50%, hyponatraemia 39.1%) but a high percentage of the other malarial species show these abnormalities (P. vivax anaemia 57.7%, hyponatraemia 19.2%). When these abnormalities are present but blood films for malaria parasites are negative, repeat blood films are warranted until a parasitological diagnosis is achieved and correct treatment may be started.
    Matched MeSH terms: Malaria/diagnosis*
  10. Sidhu PS, Ng SC
    Med J Malaysia, 1991 Jun;46(2):177-82.
    PMID: 1839423
    A review of malaria cases over a five year period from 1984-1988 at the University Hospital, Kuala Lumpur, Malaysia is presented. A total of 64 cases were recorded; 50% of which were due to Plasmodium falciparum, 40.6% were due to Plasmodium vivax, 6.2% due to Plasmodium malariae and 3.1% due to a mixed infection of Plasmodium falciparum and Plasmodium vivax. The breakdown of species type compared similarly with other studies conducted in the region. Of this total, sixteen cases were imported from Pakistan, India, Thailand, Indonesia, Sri Lanka, Vietnam, Madagascar and Mali. The presenting symptoms and the clinical findings were typical of a malaria infection. The main problem in the future will be the increase in imported cases of malaria.
    Matched MeSH terms: Malaria/diagnosis
  11. O'Holohan DR, Hugoe-Matthews J
    Med J Malaya, 1972 Sep;27(1):52-6.
    PMID: 4264826
    Matched MeSH terms: Malaria/diagnosis
  12. Lee WC, Russell B, Lau YL, Fong MY, Chu C, Sriprawat K, et al.
    PLoS One, 2013;8(4):e60303.
    PMID: 23565221 DOI: 10.1371/journal.pone.0060303
    The quantity of circulating reticulocytes is an important indicator of erythropoietic activity in response to a wide range of haematological pathologies. While most modern laboratories use flow cytometry to quantify reticulocytes, most field laboratories still rely on 'subvital' staining. The specialist 'subvital' stains, New Methylene Blue (NMB) and Brilliant Crésyl Blue are often difficult to procure, toxic, and show inconsistencies between batches. Here we demonstrate the utility of Giemsa's stain (commonly used microbiology and parasitology) in a 'subvital' manner to provide an accurate method to visualize and count reticulocytes in blood samples from normal and malaria-infected individuals.
    Matched MeSH terms: Malaria/diagnosis
  13. Selvarajah D, Naing C, Htet NH, Mak JW
    Malar J, 2020 Jun 19;19(1):211.
    PMID: 32560728 DOI: 10.1186/s12936-020-03283-9
    BACKGROUND: The global malaria decline has stalled and only a few countries are pushing towards pre-elimination. The aim of the malaria elimination phase is interruption of local transmission of a specified malaria parasite in a defined geographical area. New and improved screening tools and strategies are required for detection and management of very low-density parasitaemia in the field. The objective of this study was to synthesize evidence on the diagnostic accuracy of loop-mediated isothermal amplification (LAMP) test for the detection of malaria parasites among people living in endemic areas.

    METHODS: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. Relevant studies in the health-related electronic databases were searched. According to the criteria set for this study, eligible studies were identified. The quality of included studies was evaluated with the use of a quality assessment checklist. A summary performance estimates such as pooled sensitivity and specificity were stratified by type of LAMP. Bivariate model for data analyses was applied. Summary receiver operating characteristics plots were created to display the results of individual studies in a receiver operating characteristics space. Meta-regression analysis was performed to investigate the sources of heterogeneity among individual studies.

    RESULTS: Twenty-seven studies across 17 endemic countries were identified. The vast majority of studies were with unclear risk of bias in the selection of index test. Overall, the pooled test performances were high for Pan LAMP (sensitivity: 0.95, 95% CI 0.91 to 0.97; specificity: 0.98, 95% CI 0.95 to 0.99), Plasmodium falciparum (Pf) LAMP (sensitivity: 0.96, 95% CI 0.94 to 0.98; specificity: 0.99, 95% CI 0.96 to 1.00) or for Plasmodium vivax (Pv) LAMP from 6 studies (sensitivity: 0.98, 95% CI 0.92 to 0.99; specificity: 0.99, 95% CI 0.72 to 1.00). The area under the curve for Pan LAMP (0.99, 95% CI 0.98-1.00), Pf LAMP (0.99, 95% CI 0.97-0.99) and Pv LAMP was (1.00, 95% CI 0.98-1.00) indicated that the diagnostic performance of these tests were within the excellent accuracy range. Meta-regression analysis showed that sample size had the greatest impact on test performance, among other factors.

    CONCLUSIONS: The current findings suggest that LAMP-based assays are appropriate for detecting low-level malaria parasite infections in the field and would become valuable tools for malaria control and elimination programmes. Future well-designed larger sample studies on LAMP assessment in passive and active malaria surveillances that use PCR as the reference standard and provide sufficient data to construct 2 × 2 diagnostic table are needed.

    Matched MeSH terms: Malaria/diagnosis*
  14. Mahittikorn A, Masangkay FR, Kotepui KU, Milanez GJ, Kotepui M
    Malar J, 2021 Apr 09;20(1):179.
    PMID: 33836773 DOI: 10.1186/s12936-021-03714-1
    BACKGROUND: Plasmodium knowlesi is recognized as the fifth Plasmodium species causing malaria in humans. It is morphologically similar to the human malaria parasite Plasmodium malariae, so molecular detection should be used to clearly discriminate between these Plasmodium species. This study aimed to quantify the rate at which P. knowlesi is misidentified as P. malariae by microscopy in endemic and non-endemic areas.

    METHODS: The protocol of this systematic review was registered in the PROSPERO International Prospective Register of Systematic Reviews (ID = CRD42020204770). Studies reporting the misidentification of P. knowlesi as P. malariae by microscopy and confirmation of this by molecular methods in MEDLINE, Web of Science and Scopus were reviewed. The risk of bias in the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS). The pooled prevalence and 95% confidence interval (CI) of the misidentification of P. knowlesi as P. malariae by microscopy were estimated using a random effects model. Subgroup analysis of the study sites was performed to demonstrate any differences in the misidentification rates in different areas. Heterogeneity across the included studies was assessed and quantified using Cochran's Q and I2 statistics, respectively. Publication bias in the included studies was assessed using the funnel plot, Egger's test and contour-enhanced funnel plot.

    RESULTS: Among 375 reviewed studies, 11 studies with a total of 1569 confirmed P. knowlesi cases in humans were included. Overall, the pooled prevalence of the misidentification of P. knowlesi as P. malariae by microscopy was estimated at 57% (95% CI 37-77%, I2: 99.3%). Subgroup analysis demonstrated the highest rate of misidentification in Sawarak, Malaysia (87%, 95% CI 83-90%, I2: 95%), followed by Sabah, Malaysia (85%, 95% CI 79-92%, I2: 85.1%), Indonesia (16%, 95% CI 6-38%), and then Thailand (4%, 95% CI 2-9%, I2: 95%).

    CONCLUSION: Although the World Health Organization (WHO) recommends that all P. malariae-positive diagnoses made by microscopy in P. knowlesi endemic areas be reported as P. malariae/P. knowlesi malaria, the possibility of microscopists misidentifying P. knowlesi as P. malariae is a diagnostic challenge. The use of molecular techniques in cases with malariae-like Plasmodium with high parasite density as determined by microscopy could help identify human P. knowlesi cases in non-endemic countries.

    Matched MeSH terms: Malaria/diagnosis
  15. Matsuoka H, Wang J, Hirai M, Arai M, Yoshida S, Kobayashi T, et al.
    J Hum Genet, 2004;49(10):544-547.
    PMID: 15349799 DOI: 10.1007/s10038-004-0187-7
    We conducted a survey of malaria diagnoses and treatments in remote areas of Myanmar. Blood specimens from more than 1,000 people were collected by the finger-prick method, and 121 (11%) of these people were found to be glucose-6-phosphate dehydrogenase (G6PD) deficient. Of these 121, 50 consented to analysis of the G6PD genome. We read the G6PD sequences of these subjects and found 45 cases of G6PD Mahidol (487G>A), two of G6PD Coimbra (592C>T), two of G6PD Union (1360C>T), and one of G6PD Canton (1376G>T). Taken together with data from our previous report, 91.3% (73/80) of G6PD variants were G6PD Mahidol. This finding suggests that the Myanmar population is derived from homogeneous ancestries and are different from Thai, Malaysian, and Indonesian populations.
    Matched MeSH terms: Malaria/diagnosis
  16. Hartmeyer GN, Stensvold CR, Fabricius T, Marmolin ES, Hoegh SV, Nielsen HV, et al.
    Emerg Infect Dis, 2019 10;25(10):1936-1939.
    PMID: 31538931 DOI: 10.3201/eid2510.190448
    We report human infection with simian Plasmodium cynomolgi in a tourist from Denmark who had visited forested areas in peninsular Malaysia and Thailand in August and September 2018. Because P. cynomolgi may go unnoticed by standard malaria diagnostics, this malaria species may be more common in humans than was previously thought.
    Matched MeSH terms: Malaria/diagnosis
  17. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am J Trop Med Hyg, 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: Malaria/diagnosis
  18. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM
    Malar J, 2014;13:68.
    PMID: 24564912 DOI: 10.1186/1475-2875-13-68
    Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
    Matched MeSH terms: Malaria/diagnosis*
  19. Fan L, Lee SY, Koay E, Harkensee C
    BMJ Case Rep, 2013;2013:bcr2013009558.
    PMID: 23608876 DOI: 10.1136/bcr-2013-009558
    Plasmodium knowlesi malaria is an uncommon, but highly prevalent parasitic infection in parts of Malaysia. This is the case of a 14-year-old Singaporean boy presenting to our emergency department with an 11-day history of fever following a school trip to Malaysia. Hepatosplenomegaly was the only clinical finding; laboratory tests showed thrombocytopaenia, lymphopaenia, mild anaemia and liver transaminitis. Specific malaria antigen tests were negative, but the peripheral blood film showed plasmodia with atypical features, with a parasite load of 0.5%. PCR confirmed the diagnosis of P knowlesi. The patient was successfully treated with chloroquine. The clinical course of P knowlesi malaria is indistinguishable from that of Plasmodium falciparum. This case highlights the importance of taking detailed travel history, careful examination of malaria blood films and judicious use of molecular techniques. Antigen tests alone may have missed a malaria diagnosis altogether, while blood film examination may wrongly identify the species as Plasmodium malariae or P falciparum. Third-generation PCR assays can be used to reliably identify P knowlesi.
    Matched MeSH terms: Malaria/diagnosis*
  20. Abdul-Nasir AS, Mashor MY, Mohamed Z
    Comput Math Methods Med, 2012;2012:637360.
    PMID: 23082089 DOI: 10.1155/2012/637360
    Malaria is one of the serious global health problem, causing widespread sufferings and deaths in various parts of the world. With the large number of cases diagnosed over the year, early detection and accurate diagnosis which facilitates prompt treatment is an essential requirement to control malaria. For centuries now, manual microscopic examination of blood slide remains the gold standard for malaria diagnosis. However, low contrast of the malaria and variable smears quality are some factors that may influence the accuracy of interpretation by microbiologists. In order to reduce this problem, this paper aims to investigate the performance of the proposed contrast enhancement techniques namely, modified global and modified linear contrast stretching as well as the conventional global and linear contrast stretching that have been applied on malaria images of P. vivax species. The results show that the proposed modified global and modified linear contrast stretching techniques have successfully increased the contrast of the parasites and the infected red blood cells compared to the conventional global and linear contrast stretching. Hence, the resultant images would become useful to microbiologists for identification of various stages and species of malaria.
    Matched MeSH terms: Malaria/diagnosis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links