Displaying all 9 publications

Abstract:
Sort:
  1. Mohammed IA, Mustapha A
    Molecules, 2010;15(10):7498-509.
    PMID: 20975631 DOI: 10.3390/molecules15107498
    Maleic anhydride was reacted with p-aminophenol and p-toluidine in the presence of di-phosphorus pentoxide (P₂O₅) as a catalyst to produce two compounds: N-(4-hydroxy-phenyl)maleimide (I) and N-(4-methylphenyl)maleimide (II). The new azo compounds I(a-c) and II(a-c) were prepared by the reaction of I and II with three different aromatic amines, namely aniline, p-aminophenol and p-toluidine. The structures of these compounds were confirmed by CHN, FT-IR, ¹H-NMR, ¹³C-NMR, mass spectrum and UV/Vis spectroscopy.
    Matched MeSH terms: Maleimides/chemistry*
  2. Kosikova T, Hassan NI, Cordes DB, Slawin AM, Philp D
    J Am Chem Soc, 2015 Dec 30;137(51):16074-83.
    PMID: 26473285 DOI: 10.1021/jacs.5b09738
    Within a small, interconnected reaction network, orthogonal recognition processes drive the assembly and replication of a [2]rotaxane. Rotaxane formation is governed by a central, hydrogen-bonding-mediated binding equilibrium between a macrocycle and a linear component, which associate to give a reactive pseudorotaxane. Both the pseudorotaxane and the linear component undergo irreversible, recognition-mediated 1,3-dipolar cycloaddition reactions with a stoppering maleimide group, forming rotaxane and thread, respectively. As a result of these orthogonal recognition-mediated processes, the rotaxane and thread can act as auto-catalytic templates for their own formation and also operate as cross-catalytic templates for each other. However, the interplay between the recognition and reaction processes in this reaction network results in the formation of undesirable pseudorotaxane complexes, causing thread formation to exceed rotaxane formation in the current experimental system. Nevertheless, in the absence of competitive macrocycle-binding sites, realization of a replicating network favoring formation of rotaxane is possible.
    Matched MeSH terms: Maleimides
  3. Asniza M, Issam A, Abdul Khalil H
    Sains Malaysiana, 2011;40:1123-1127.
    A new heterocyclic coupling agent has been produced from the reaction of maleic anhydride and p-aminophenol, namely N-(4-hydroxylpheneyl)maleimide. The coupling agent underwent azo coupling reaction with aromatic amine, which is p-aminophenol to produce a new heterocyclic azo pigment. The pigment was then subjected to solubility, hiding power and light fastness test. Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet/Visible (UV/Vis) Spectroscopy, and Nuclear Magnetic Resonance Spectroscopy (1H-NMR, 13C-NMR) were used to obtain the characteristics and structural features of the pigment.
    Matched MeSH terms: Maleimides
  4. Buang F, Fu M, Chatzifragkou A, Amin MCIM, Khutoryanskiy VV
    Int J Pharm, 2023 Jul 25;642:123113.
    PMID: 37301242 DOI: 10.1016/j.ijpharm.2023.123113
    Hydroxyethylcellulose (HEC) is a non-ionic water-soluble polymer with poor mucoadhesive properties. The mucoadhesive properties of hydroxyethylcellulose can be improved by modifying it through conjugation with molecules containing maleimide groups. Maleimide groups interact with the thiol groups present in cysteine domains in the mucin via Michael addition reaction under physiological conditions to form a strong mucoadhesive bond. This will prolong the residence time of a dosage form containing this modified polymer and drug on mucosal surfaces. In this study HEC was modified by reaction with 4-bromophenyl maleimide in varying molar ratios and the successful synthesis was confirmed using 1H NMR and FTIR spectroscopies. The safety of the newly synthesised polymer derivatives was assessed with in vivo planaria assays and in vitro MTT assay utilising Caco-2 cell line. The synthesized maleimide-functionalised HEC solutions were sprayed onto blank tablets to develop a model dosage form. The physical properties and mucoadhesive behavior of these tablets were evaluated using a tensile test with sheep buccal mucosa. The maleimide-functionalised HEC exhibited superior mucoadhesive properties compared to unmodified HEC.
    Matched MeSH terms: Maleimides
  5. Dag A, Jiang Y, Karim KJ, Hart-Smith G, Scarano W, Stenzel MH
    Macromol Rapid Commun, 2015 May;36(10):890-7.
    PMID: 25790077 DOI: 10.1002/marc.201400576
    The delivery of macromolecular platinum drugs into cancerous cells is enhanced by conjugating the polymer to albumin. The monomers N-(2-hydroxypropyl)methacrylamide (HPMA) and Boc protected 1,3-diaminopropan-2-yl acrylate (Ac-DAP-Boc) are copolymerized in the presence of a furan protected maleimide functionalized reversible addition-fragmentation chain transfer (RAFT) agent. The resulting polymer with a composition of P(HPMA14 -co-(Ac-DAP-Boc)9 ) and a molecular weight of Mn = 7600 g mol(-1) (Đ = 1.24) is used as a macromolecular ligand for the conjugation to the platinum drug. Thermogravimetric analysis reveals full conjugation. After deprotection of the maleimide functionality of the polymer, the reactive polymer is conjugated to albumin using the Cys34 functionality. The conjugation is monitored using size exclusion chromatography, MALDI-TOF (matrix assisted laser desorption ionization time-of-flight), and SDS Page (sodium dodecyl sulphate polyacrylamide gel electrophoresis). The polymer-albumin conjugates self-assemble in water into nanoparticles of sizes of around 80 nm thanks to the hydrophobic nature of the platinum drugs. The albumin coated nanoparticles are readily taken up by ovarian cancer cell lines and they show superior toxicity compared to a control sample without protein coating.
    Matched MeSH terms: Maleimides/chemistry
  6. Davoudi M, Vijeepallam K, Azizi H, Mirnajafi-Zadeh J, Semnanian S
    J Neural Transm (Vienna), 2019 11;126(11):1425-1435.
    PMID: 31493096 DOI: 10.1007/s00702-019-02064-2
    The locus coeruleus (LC) as a target of addictive drugs receives a dense projection of orexinergic fibres from the lateral hypothalamus (LH) and is accordingly a candidate site for the expression of the somatic aspects of morphine withdrawal. Recently it has been shown that the inhibitory synaptic currents of LC neurons decrease partly through orexin type 1 receptors in the context of naloxone-induced morphine withdrawal; however, its cellular mechanism remains unclear. In this study, whole-cell patch clamp recordings of LC neurons in brainstem slices were used to investigate the impact of protein kinase C (PKC) on GABAergic inhibitory post-synaptic currents (IPSCs) in the context of naloxone-induced morphine withdrawal. Male Wistar rats (P14-P21) received morphine (20 mg/kg, i.p.) daily for 7 consecutive days to induce morphine dependency. Our results showed that the application of PKC inhibitor (Go 6983; 1 µM) alone did not decrease the probability of GABA release in the LC neurons of the morphine-treated rats in the presence of naloxone. Although, Go 6983 reversed the reduction of the amplitude of evoked IPSCs (eIPSCs) and spontaneous IPSCs (sIPSCs) frequency induced by orexin-A but did not change the sIPSCs amplitude. These results indicate that the suppressive effect of orexin-A on IPSCs is probably reversed by PKC inhibitor in the LC neurons of morphine-treated rats in the context of naloxone withdrawal.
    Matched MeSH terms: Maleimides/pharmacology
  7. Gopinath VK, Musa M, Samsudin AR, Sosroseno W
    PMID: 16997796
    The role of protein kinase C (PKC) in hydroxyapatite (HA)-induced phagocytosis by RAW 264.7 cells was investigated. The cells were incubated with HA particles at various incubation time and the levels of PKC activity were determined from the cell lysate. To determine the role of PKC, particles were incubated with the cells pretreated with the various concentrations of bisindolylmaleimide, a PKC inhibitor, and phagocytosis was then assessed at 60 min. Latex beads were used as a control. Our results showed that following incubation with HA particles, the levels of PKC activity in RAW264.7 cells was highest at 7 min and then decreased to reach the baseline levels of the controls at 30 min. Pretreatment of the cells with bisindolylmaleimide significantly reduced phagocytosis of HA particles in a dose-dependent pattern. The results of our present study suggest therefore that ingestion of HA by RAW264.7 cells may depend on PKC activity that may act in the early stages of phagocytosis.
    Matched MeSH terms: Maleimides/pharmacology
  8. Nafi’, A., Foo, H.L., Jamilah, B., Ghazali. H.M.
    MyJurnal
    Proteases in ginger rhizome have the potentials in industrial applications. This study was conducted to extract and characterize the proteolytic enzyme from ginger (Zingiber officinale Roscoe). Ginger protease (GP) was extracted from ginger rhizome by homogenization with 100 mM potassium phosphate buffer pH 7.0 containing 10 mM cysteine and 5 mM EDTA which were found to be the most efficient extraction buffer and stabilizers. After centrifugation at 10,500 x g, protein in the crude extract was precipitated using 60% ammonium sulfate following which the precipitate was redissolved in 50 mM potassium phosphate buffer pH 7.0, dialyzed and then lyophilized. The extraction method yielded 0.94% (w/w of fresh weight) of GP with a specific activity of 27.6 ± 0.1 Unit/mg protein where 1 Unit is defined as the amount of protease causing an increase in absorbance by 1 unit per minute using azocasein as the substrate. Results show that the GP was completely inhibited by heavy metal cations i.e. Cu2+and Hg2+, and a thiol blocking agent or inhibitor, n-ethyl maleimide (NEM), indicating that GP is most probably a cysteine protease. The enzyme has an optimum temperature at 60⁰C and the optimum pH ranged between pH 6 to 8. Monovalent cations (K+ and Na+) have no significant effect on activity of GP, but divalent and trivalent cations showed moderate inhibitory effect. Detergents such as sodium dodecyl sulfate increased the activity of GP while Tween 80 and Tween 20 slightly reduced the activity.
    Matched MeSH terms: Maleimides
  9. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: Maleimides/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links