Displaying publications 1 - 20 of 304 in total

  1. Reza F, Churei H, Takahashi H, Iwasaki N, Ueno T
    Dent Traumatol, 2014 Jun;30(3):193-7.
    PMID: 24102720 DOI: 10.1111/edt.12068
    Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems.
    Matched MeSH terms: Materials Testing*
  2. Ulum MF, Nasution AK, Yusop AH, Arafat A, Kadir MR, Juniantito V, et al.
    PMID: 25385691 DOI: 10.1002/jbm.b.33315
    Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones. Real-time ultrasound analysis showed a decreased echo pattern at the peri-implant biodegradation site of the composites indicating minimal tissue response during the wound healing process. Peripheral whole blood biomarkers monitoring showed a normal dynamic change of blood cellular responses and no stress effect was observed. Meanwhile, the released Fe ion concentration was increasing along the implantation period. Histological analysis showed that the composites corresponded with a lower inflammatory giant cell count than that of SS316L. Analysis of the retrieved implants showed a thicker degradation layer on the composites compared with pure-Fe. It can be concluded that the iron-bioceramic composites are bioactive and induce a preferable wound healing process.
    Matched MeSH terms: Materials Testing*
  3. Mashaan NS, Karim MR, Abdel Aziz M, Ibrahim MR, Katman HY, Koting S
    ScientificWorldJournal, 2014;2014:968075.
    PMID: 25050406 DOI: 10.1155/2014/968075
    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.
    Matched MeSH terms: Materials Testing*
  4. Mirzapour Mounes S, Karim MR, Khodaii A, Almasi MH
    ScientificWorldJournal, 2014;2014:764218.
    PMID: 24526919 DOI: 10.1155/2014/764218
    A pavement structure consists of several layers for the primary purpose of transmitting and distributing traffic loads to the subgrade. Rutting is one form of pavement distresses that may influence the performance of road pavements. Geosynthetics is one type of synthetic materials utilized for improving the performance of pavements against rutting. Various studies have been conducted on using different geosynthetic materials in pavement structures by different researchers. One of the practices is a reinforcing material in asphalt pavements. This paper intends to present and discuss the discoveries from some of the studies on utilizing geosynthetics in flexible pavements as reinforcement against permanent deformation (rutting).
    Matched MeSH terms: Materials Testing/methods*; Materials Testing/standards
  5. Gonzalez, M.A.G., Kasim, N.H.A., Aziz, R.A.
    Ann Dent, 1997;4(1):-.
    Microleakage testing has been used to determine the possible clinical performance of a restorative material. Many microleakage testing materials have been developed and performed through the years. There has been no agreement as to which testing methodology would give the most accurate results. Attempts have been made to simulate the oral conditions and to give a more quantitative representation of micro leakage. The different micro leakage testing methodologies are presented in this paper.
    Matched MeSH terms: Materials Testing
  6. Kamruzzaman M, Jumaat MZ, Sulong NH, Islam AB
    ScientificWorldJournal, 2014;2014:702537.
    PMID: 25243221 DOI: 10.1155/2014/702537
    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
    Matched MeSH terms: Materials Testing/methods; Materials Testing/standards*
  7. Akib S, Liana Mamat N, Basser H, Jahangirzadeh A
    ScientificWorldJournal, 2014;2014:128635.
    PMID: 25247201 DOI: 10.1155/2014/128635
    The present study examines the use of collars and geobags for reducing local scour around bridge piles. The efficiency of collars and geobags was studied experimentally. The data from the experiments were compared with data from earlier studies on the use of single piles with a collar and with a geobag. The results showed that using a combination of a steel collar and a geobag yields the most significant scour reduction for the front and rear piles, respectively. Moreover, the independent steel collar showed better efficiency than the independent geobag below the sediment level around the bridge piles.
    Matched MeSH terms: Materials Testing/methods; Materials Testing/standards*
  8. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Arifin N, Wan Abas WA
    Biomed Eng Online, 2014;13:1.
    PMID: 24410918 DOI: 10.1186/1475-925X-13-1
    Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
    Matched MeSH terms: Materials Testing/instrumentation; Materials Testing/methods*
  9. Talebi E, Tahir MM, Zahmatkesh F, Yasreen A, Mirza J
    ScientificWorldJournal, 2014;2014:672629.
    PMID: 24526915 DOI: 10.1155/2014/672629
    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
    Matched MeSH terms: Materials Testing/methods*; Materials Testing/standards*
  10. Nuruddin MF, Khan SU, Shafiq N, Ayub T
    ScientificWorldJournal, 2014;2014:387259.
    PMID: 24707202 DOI: 10.1155/2014/387259
    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.
    Matched MeSH terms: Materials Testing/methods*
  11. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Materials Testing*
  12. Butcher AL, Koh CT, Oyen ML
    J Mech Behav Biomed Mater, 2017 May;69:412-419.
    PMID: 28208112 DOI: 10.1016/j.jmbbm.2017.02.007
    Electrospinning is a simple and efficient process for producing sub-micron fibres. However, the process has many variables, and their effects on the non-woven mesh of fibres is complex. In particular, the effects on the mechanical properties of the fibre meshes are poorly understood. This paper conducts a parametric study, where the concentration and bloom strength of the gelatin solutions are varied, while all electrospinning process parameters are held constant. The effects on the fibrous meshes are monitored using scanning electron microscopy and mechanical testing under uniaxial tension. Mesh mechanical properties are relatively consistent, despite changes to the solutions, demonstrating the robustness of electrospinning. The gel strength of the solution is shown to have a statistically significant effect on the morphology, stiffness and strength of the meshes, while the fibre diameter has surprisingly little influence on the stiffness of the meshes. This experimental finding is supported by finite element analysis, demonstrating that the stiffness of the meshes is controlled by the volume fraction, rather than fibre diameter. Our results demonstrate the importance of understanding how electrospinning parameters influence the pore size of the meshes, as controlling fibre diameter alone is insufficient for consistent mechanical properties.
    Matched MeSH terms: Materials Testing*
  13. Matinmanesh A, Li Y, Clarkin O, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2017 11;75:212-221.
    PMID: 28756281 DOI: 10.1016/j.jmbbm.2017.07.030
    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, GIIC, of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO3in the glass composition was found to increase the GIICalmost twofold, from 25.3 to 46.9J/m2. The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself.
    Matched MeSH terms: Materials Testing*
  14. Talib RJ, Toff MR
    Med. J. Malaysia, 2004 May;59 Suppl B:153-4.
    PMID: 15468864
    Metal implants such as titanium, stainless steel and Co-Cr-Mo are used for load bearing purposes such as hip joint prostheses, fixing plates and dental root implants. For practical application, plasma-sprayed coatings of hydroxyapatite (HA) on metal implants are applied to promote early formation of strong bonds between metal implant and living bone. Plasma spray coating involves heating of HA material to a semi-molten or molten state and then propels its to a metal substrate. The plasma flame temperature is in the range of 6,000 degrees C to 16,000 degrees C but the surface temperature of the substrate rarely exceeds 150 degrees C. The HA materials are feed into the spray gun in the form of powders. Furthermore, this paper will discuss the processes of plasma-sprayed coating of HA on various types of metal implants.
    Matched MeSH terms: Materials Testing*
  15. Azlan AM, Mohammad AR, Ariffin AK
    Med. J. Malaysia, 2005 Jul;60 Suppl C:30-4.
    PMID: 16381280 MyJurnal
    This finite element analysis is aimed at comparing relative stiffness of three different posterior instrumentation constructs: the Hospital Universiti Kebangsaan Malaysia Spinal Instrumentation System (HUKM-SIS), the Cotrell-Dubousset Instrumentation (CDI) and Harrington Instrumentation System (HIS), used in the treatment of adolescent idiopathic scoliosis (AIS). The constructs were tested under various loads using MSC Patran 2001 r2a. Under increasing flexion loads, there was a linearly corresponding increase in deflection magnitudes for all constructs on the load-deflection curve. The CDI was the stiffest construct under axial, forward flexion and extension loads, followed by the HUKM-SIS and HIS. Under lateral bending loads, the HUKM-SIS construct was the stiffest followed by CDI and HIS. The HUKM-SIS construct was stiffer than HIS under torsional loads. We conclude that multiple pedicle screws increase the stiffness of posterior instrumentation constructs under all loads and inter-segmental spinous processes wiring increase the stiffness against lateral bending.
    Matched MeSH terms: Materials Testing*
  16. Ibrahim WM, McCabe JF
    J Nihon Univ Sch Dent, 1993 Dec;35(4):225-9.
    PMID: 8158281
    The mean strength that has traditionally been taken as a measurement of the strength of a material does not reflect the true strength, and therefore it cannot be used as a design parameter. This explains why many brittle materials fail at unpredictable stress, either below or above the mean strength. By using Weibull statistics, the prediction and assessment of strength can be made more sensibly. The performance of a material can be predicted by considering a stress at a lower level of failure probability.
    Matched MeSH terms: Materials Testing/statistics & numerical data*
  17. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS ONE, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
    Matched MeSH terms: Materials Testing*
  18. Rajaratanam DD, Ariffin H, Hassan MA, Nik Abd Rahman NMA, Nishida H
    PLoS ONE, 2018;13(6):e0199742.
    PMID: 29944726 DOI: 10.1371/journal.pone.0199742
    In order to clarify the in vitro cytotoxicity effect of superheated steam (SHS) treated poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) (PHBHHx) for biomaterial applications, SHS-treated PHBHHx oligoester samples: P(HB-co-6%-HHx) and P(HB-co-11%-HHx) with low and high percentages of unsaturated chain ends were evaluated for their cytotoxicity effects toward the growth of mouse fibroblast cell line NIH 3T3. From the results obtained after 24 and 48 h of the growth test, the SHS-treated PHBHHx oligoesters were found to be nontoxic to the growth of mouse fibroblast NIH 3T3 cell line with cell viability percentages of more than 95%. In order to serve as a potential resorbable medical suture, PHBHHx oligoesters were blended with poly(L-lactic acid) (PLLA) with a weight ratio of PHBHHx oligoester/PLLA = 20:80 (wt/wt) to improve mechanical properties of PHBHHx oligoesters. The PHBHHx oligoesters/PLLA blend films were evaluated for their thermal, mechanical, and surface wetting properties. Thermal properties of the blend films suggested a good compatibility between PHBHHx oligoesters and PLLA components. Mechanical properties of the blend films were determined to be close enough to a desirable strength range of medical sutures. Moreover, contact angle range of 65 < θ < 70° for the blend samples could provide desirable cell adhesion when used as biomaterials. Therefore, the blend of SHS-treated PHBHHx oligoesters and PLLA would be an ideal choice to be used as biomedical materials.
    Matched MeSH terms: Materials Testing*
  19. Krishnasamy S, Thiagamani SMK, Muthu Kumar C, Nagarajan R, R M S, Siengchin S, et al.
    Int. J. Biol. Macromol., 2019 Dec 01;141:1-13.
    PMID: 31472211 DOI: 10.1016/j.ijbiomac.2019.08.231
    Bio-composites are easy to manufacture and environmentally friendly, could reduce the overall cost and provide lightweight due to the low density of the natural fibers. In a bid to compete with the synthetic fiber reinforced composites, a single natural fiber composite may not be a good choice to obtain optimal properties. Hence, hybrid composites are produced by adding two or more natural fibers together to obtain improved properties, such as mechanical, physical, thermal, water absorption, acoustic and dynamic, among others. Regarding thermal stability, the composites showed a significant change by varying the individual fiber compositions, fiber surface treatments, addition of fillers and coupling agents. The glass transition temperature and melting point obtained from the thermomechanical analysis and differential scanning calorimetry are not the same values for several hybrid composites, since the volume variation was not always parallel with the enthalpy change. However, the difference between the temperature calculated from the thermomechanical analysis and differential scanning calorimetry was lower. Significantly, this critical reviewed study has a potential of guiding all composite designers, manufacturers and users on right selection of composite materials for thermal applications, such as engine components (covers), heat shields and brake ducts, among others.
    Matched MeSH terms: Materials Testing*
  20. Choudhury D, Lackner JM, Major L, Morita T, Sawae Y, Bin Mamat A, et al.
    J Mech Behav Biomed Mater, 2016 06;59:586-595.
    PMID: 27085502 DOI: 10.1016/j.jmbbm.2016.04.004
    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading.
    Matched MeSH terms: Materials Testing*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links