Displaying all 10 publications

Abstract:
Sort:
  1. Kazemzadeh A, Ganesan P, Ibrahim F, He S, Madou MJ
    PLoS One, 2013;8(9):e73002.
    PMID: 24069169 DOI: 10.1371/journal.pone.0073002
    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  2. Zulkepli SNIS, Hamid NH, Shukla V
    Biosensors (Basel), 2018 May 08;8(2).
    PMID: 29738428 DOI: 10.3390/bios8020045
    In recent years, the number of interdisciplinary research works related to the development of miniaturized systems with integrated chemical and biological analyses is increasing. Digital microfluidic biochips (DMFBs) are one kind of miniaturized systems designed for conducting inexpensive, fast, convenient and reliable biochemical assay procedures focusing on basic scientific research and medical diagnostics. The role of a dielectric layer in the digital microfluidic biochips is prominent as it helps in actuating microliter droplets based on the electrowetting-on-dielectric (EWOD) technique. The advantages of using three different material layers of dielectric such as parafilm, polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE) were reported in the current work. A simple fabrication process of a digital microfluidic device was performed and good results were obtained. The threshold of the actuation voltage was determined for all dielectric materials of varying thicknesses. Additionally, the OpenDrop device was tested by utilizing a single-plate system to transport microliter droplets for a bioassay operation. With the newly proposed fabrication methods, these dielectric materials showed changes in contact angle and droplet velocity when the actuation voltage was applied. The threshold actuation voltage for the dielectric layers of 10⁻13 μm was 190 V for the open plate DMFBs.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods*
  3. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al.
    Biosens Bioelectron, 2014 Apr 15;54:585-97.
    PMID: 24333570 DOI: 10.1016/j.bios.2013.10.075
    Advanced diagnostic technologies, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), have been widely used in well-equipped laboratories. However, they are not affordable or accessible in resource-limited settings due to the lack of basic infrastructure and/or trained operators. Paper-based diagnostic technologies are affordable, user-friendly, rapid, robust, and scalable for manufacturing, thus holding great potential to deliver point-of-care (POC) diagnostics to resource-limited settings. In this review, we present the working principles and reaction mechanism of paper-based diagnostics, including dipstick assays, lateral flow assays (LFAs), and microfluidic paper-based analytical devices (μPADs), as well as the selection of substrates and fabrication methods. Further, we report the advances in improving detection sensitivity, quantification readout, procedure simplification and multi-functionalization of paper-based diagnostics, and discuss the disadvantages of paper-based diagnostics. We envision that miniaturized and integrated paper-based diagnostic devices with the sample-in-answer-out capability will meet the diverse requirements for diagnosis and treatment monitoring at the POC.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  4. Yunus NA, Nili H, Green NG
    Electrophoresis, 2013 Apr;34(7):969-78.
    PMID: 23436439 DOI: 10.1002/elps.201200466
    Dielectrophoresis is the movement of particles in nonuniform electric fields and has been of interest for application to manipulation and separation at and below the microscale. This technique has the advantages of being noninvasive, nondestructive, and noncontact, with the movement of particle achieved by means of electric fields generated by miniaturized electrodes and microfluidic systems. Although the majority of applications have been above the microscale, there is increasing interest in application to colloidal particles around a micron and smaller. This paper begins with a review of colloidal and nanoscale dielectrophoresis with specific attention paid to separation applications. An innovative design of integrated microelectrode array and its application to flow-through, continuous separation of colloidal particles is then presented. The details of the angled chevron microelectrode array and the test microfluidic system are then discussed. The variation in device operation with applied signal voltage is presented and discussed in terms of separation efficiency, demonstrating 99.9% separation of a mixture of colloidal latex spheres.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods*
  5. Khalili AA, Ahmad MR
    Int J Mol Sci, 2015 Aug 05;16(8):18149-84.
    PMID: 26251901 DOI: 10.3390/ijms160818149
    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  6. Uddin SM, Ibrahim F, Sayad AA, Thiha A, Pei KX, Mohktar MS, et al.
    Sensors (Basel), 2015 Mar 05;15(3):5376-89.
    PMID: 25751077 DOI: 10.3390/s150305376
    In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10(-3) ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods*
  7. Nilghaz A, Wicaksono DH, Gustiono D, Abdul Majid FA, Supriyanto E, Abdul Kadir MR
    Lab Chip, 2012 Jan 7;12(1):209-18.
    PMID: 22089026 DOI: 10.1039/c1lc20764d
    This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  8. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  9. Che Harun FK, Covington JA, Gardner JW
    IET Nanobiotechnol, 2012 Jun;6(2):45-51.
    PMID: 22559706 DOI: 10.1049/iet-nbt.2010.0032
    In this study the authors report on the development of a new type of electronic nose (e-nose) instrument, which the authors refer to as the Portable electronic Mucosa (PeM) as a continuation of previous research. It is designed to mimic the human nose by taking significant biological features and replicating them electronically. The term electronic mucosa or simply e-mucosa was used because our e-nose emulates the nasal chromatographic effect discovered in the olfactory epithelium, located within the upper turbinate. The e-mucosa generates spatio-temporal information that the authors believe could lead to improved odour discrimination. The PeM comprises three large sensor arrays each containing a total of 576 sensors, with 24 different coatings, to increase the odour selectivity. The nasal chromatographic effect provides temporal information in the human olfactory system, and is mimicked here using two-coated retentive channels. These channels are coated with polar and non-polar compounds to enhance the selectivity of the instrument. Thus, for an unknown sample, the authors have both the spatial information (as with a traditional e-nose) and the temporal information. The authors believe that this PeM may offer a way forward in developing a new range of low-cost e-noses with superior odour specificity.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
  10. Dutse SW, Yusof NA
    Sensors (Basel), 2011;11(6):5754-68.
    PMID: 22163925 DOI: 10.3390/s110605754
    Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment.
    Matched MeSH terms: Microfluidic Analytical Techniques/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links