Displaying all 7 publications

Abstract:
Sort:
  1. Hajar-Azhari S, Wan-Mohtar WAAQI, Ab Kadir S, Rahim MHA, Saari N
    Food Sci Biotechnol, 2018 Apr;27(2):479-488.
    PMID: 30263772 DOI: 10.1007/s10068-017-0289-6
    In this study, a selected γ-aminobutyric acid (GABA)-rich Malaysian strain Aspergillus oryzae NSK was collected from soy sauce koji. The strain was used to explore the effect of using renewable native sugar syrup, sugarcane, nipa, and molasses as fermentable substrates for developing a novel functional GABA soy sauce. We evaluated the strain using the chosen native sugars for 7 days using shake flask fermentation at 30 °C. The results showed optimum GABA concentration was achieved using cane molasses as the fermentable substrate (354.08 mg/L), followed by sugarcane syrup (320.7 mg/L) and nipa syrup (232.07 mg/L). Cane molasses was subsequently utilized as a substrate to determine the most suitable concentration for A. oryzae NSK to enhance GABA production and was determined as 50% g/L of glucose standard cane molasses. Our findings indicate that cane molasses can be used as a GABA-rich ingredient to develop a new starter culture for A. oryzae NSK soy sauce production.
    Matched MeSH terms: Molasses
  2. Mira Panadi, Nor Dini Rusli, Khairiyah Mat, Wan Zahari Mohamed
    Sains Malaysiana, 2018;47:1447-1453.
    In a 90-day feeding trial, twenty four (24) Saanen lactating does were assigned to four treatment group. The treatments
    were feeding: basal diet only as a control (T1), basal diet with urea molasses multi-nutrient block (UMMB) (T2), basal
    diet with medicated urea molasses multi-nutrient block (MUMB) (T3) and basal diet with commercial mineral block (CMB)
    (T4). There were significant differences (p<0.05) between T2, T3 and T4 on the fecal egg count (FEC). Animals in T2
    and T3 showed moderate level of parasite infestation i.e. at 750 epg and 950 epg, respectively, while animals in T1 and
    T4 showed severe parasite load at 4917 epg and 1850 epg, respectively. There were no significant differences (p>0.05)
    between treatments on WBC, LYM, MON, GRA, RBC, HCT, MCV, MCH, PLT, MPV and PCT. However, significant effects (p<0.05)
    on HBG, MCHC, RDW and PDW were observed in T2 and T3. This research showed that UMMB and MUMB were effective
    in controlling parasite infestation in Saanen lactating dairy goats apart from improving their blood hematological
    parameters. Comparison with CMB showed that it is practical to be used for parasite control.
    Matched MeSH terms: Molasses
  3. Nouri A, Mahmoudi E, Ang WL, Panomsuwan G, Jongprateep O
    Environ Sci Pollut Res Int, 2023 Sep;30(44):98817-98831.
    PMID: 35840833 DOI: 10.1007/s11356-022-21996-z
    Sugar molasses from agricultural waste could be a sustainable carbon source for the synthesis of graphene adsorbent introduced in this work. The sugar molasses was successfully converted to graphene-like material and subsequently coated on the sand as graphene sand composite (GSC), as proven by XRD, XPS, Raman spectroscopy, and SEM with EDX mapping analyses. The adsorption performance of GSC was evaluated against the removal of Tetracycline (TC) and methylene blue (MB) pollutants from an aqueous solution in a fixed bed column continuous-flow adsorption setup. The effect of different process conditions: bed height (4-12 cm), influent flow rate (3-7 mL/min), and contaminants' concentration (50-150 ppm) was investigated. The results revealed that column performance was improved by increasing the bed depth and lowering the flow rate and concentration of the pollutants. The best removal efficiency was obtained when the bed height was 12 cm, the influent flow rate of 3 mL/min, and the pollutants' initial concentration was 50 mg/L. Thomas, Adams-Bohart, and Yoon-Nelson models were attempted to fit the breakthrough curves. Regeneration of the GSC indicated the decline of breakthrough time from 240-280 to 180 min, reflecting the decrease in adsorptive sites due to the incomplete regeneration process. Overall, sugar molasses was shown to be a low-cost precursor for synthesizing valuable graphene material in the form of GSC, which can reduce the problem for industrial waste management of sugar molasses, and the GSC could be used as an adsorbent for environmental application.
    Matched MeSH terms: Molasses
  4. Gunny AA, Arbain D, Sithamparam L
    Pak J Biol Sci, 2013 Sep 15;16(18):960-4.
    PMID: 24502155
    Production cost of enzyme is largely determined by the type of the strain and raw material used to propagate the strain. Hence, selection of the strain and raw materials is crucial in enzyme production. For Glucose oxidase (GOx), previous studies showed Aspergillus terreus UniMAP AA-1 offers a better alternative to the existing sources. Thus, a lower production cost could be logically anticipated by growing the strain in a cheaper complex media such as molasses. In this work, sugar cane molasses, supplemented with urea and carbonate salt and a locally isolated strain Aspergillus terreus UniMAP AA-1 were used to produce a crude GOx enzyme in a small scale. A statistical optimization approach namely Response Surface Methodology (RSM) was used to optimize the media components for highest GOx activity. It was found that the highest GOx activity was achieved using a combination of molasses, carbonate salt and urea at concentration 32.51, 4.58 and 0.93% (w/v), respectively. This study provides an alternative optimized media conditions for GOx production using locally available raw materials.
    Matched MeSH terms: Molasses*
  5. Almakki, Asma, Mirghani, Mohamed E.S., Kabbashi, Nassereldeen A.
    MyJurnal
    Citric acid (CA) has a high demand due to its various uses in the food and pharmaceutical industries. However, the natural supply of CA is minimal compared to its growing industrial demand. The increasing demand for CA can be fulfilled by using biotechnological processes. This study utilized liquid state bioconversion by Aspergillus niger for CA production using sugarcane molasses as the primary substrate. Sugarcane molasses which is agricultural waste consists of significant proportion of organic matters such as lipids and carbohydrates. This makes sugarcane molasses as a potential and alternative source of producing CA at a lower cost. In this study, statistical optimization was applied to improve CA production using submerged fermentation in shake flasks. Aspergillus niger was cultured in potato dextrose agar. Then, inoculum spores were introduced into the fermentation media for a specific duration according to the experimental design from Central Composite Design (CCD) tool under Response Surface Methodology (RSM) in Design Expert 6.0 software. Three parameters were chosen to be optimized at 32⁰C i.e.agitation rate (160, 80, 200 rpm), substrate concentration (47, 60, 73%) and fermentation time (24, 72, 120 h). High Performance Liquid Chromatography (HPLC)and Fourier-transform infrared spectroscopy(FTIR) analyses were conducted to measure CA yield. The optimization study showed that the media incubated for 72 hours with a substrate concentration of 60% and an agitation speed of 180 rpm produced the highest CA yield(21.2 g/L).The analysis of variance (ANOVA) also showed that CCD quadratic model was significant with P-value< 0.0104 and R2is0.8964.
    Matched MeSH terms: Molasses
  6. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Molasses
  7. Mahazar NH, Zakuan Z, Norhayati H, MeorHussin AS, Rukayadi Y
    Pak J Biol Sci, 2017;20(3):154-159.
    PMID: 29023007 DOI: 10.3923/pjbs.2017.154.159
    BACKGROUND AND OBJECTIVE: Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp.

    MATERIALS AND METHODS: Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract.

    RESULTS: Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract.

    CONCLUSION: This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

    Matched MeSH terms: Molasses
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links