METHODOLOGY: The Hexarotor Agro Drone (Polardrone Sdn Bhd, Malaysia) was used to carry out larviciding using Vectobac® manufactured by Valent BioSciences LLC, Libertyville, USA. The drone flew at a height of 10 feet and at a speed of 5 m/s. A total of 32 items with 10 larvae in each item were placed to test the effectiveness of larviciding using UAV.
RESULTS: Out of 32 items used, 4 containers had a 100% larva mortality (13.3% mortality). The drone was not able to reach the designated spraying route that had been pre-programmed. This was due to interference with the electromagnetic waves emitted from the home satellite dishes, that were in front of the houses along the route.
CONCLUSIONS: This trial showed that UAVs will be more suitable for use in larviciding in an open area without electromagnetic disturbances from electric house poles and satellite TV dishes that are commonly present in urban areas.
RESULTS: HLC caught more An. balabacensis than any other method (3.6 per night). In contrast, no An. balabacensis were collected in MBT collections, which generally performed poorly for all mosquito taxa. Anopheles vector species including An. balabacensis were sampled in both HENET and MENET collections, but at a mean abundance of less than 1 per night. There was no difference between HENET and MENET in the overall abundance (P = 0.05) or proportion (P = 0.7) of An. balabacensis. The estimated diversity of Anopheles species was marginally higher in electrocuting net than HLC collections, and similar in collections made with humans or monkey hosts.
CONCLUSIONS: Host-baited electrocuting nets had moderate success for sampling known zoonotic malaria vectors. The primary vector An. balabacensis was collected with electrocuting nets baited both with humans and macaques, but at a considerably lower density than the HLC standard. However, electrocuting nets were considerably more successful than monkey-baited traps and representatively characterised anopheline species diversity. Consequently, their use allows inferences about relative mosquito attraction to be meaningfully interpreted while eliminating confounding factors due to trapping method. On this basis, electrocuting net traps should be considered as a useful standardised method for investigating vector contact with humans and wildlife reservoirs.
METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables.
RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak.
CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.
METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.
CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.
METHODS: Anopheles immature stages were collected from their habitats in the surveyed community and allowed to emerge before exposure adult females to discriminating doses of WHO insecticides including DDT, deltamethrin, lambda cyhalothrin, bendiocarb and malathion. PBO synergistic bioassay was conducted for insecticides where the mosquito samples showed resistance. PCR assay was used for the detection of kdr mutation in the mosquitoes.
RESULTS: Resistance to DDT (40% and 86%) and lambda cyhalothrin (75% and 84%) in Oke-Ota and Majidun respectively. Suspected resistance to deltamethrin (94.9%) and bendiocarb (93.5%) was recorded in Oke-Ota community and the mosquitoes were susceptible to malathion in both communities. KDR mutation (L1014F) from resistance samples from both locations though with a low frequency that significantly departs from Hardy-Weinberg's probability (P> 0.01). PBO synergized bioassay was able to increase knockdown, percentage mortality and restore full susceptibility to deltamethrin and bendiocarb.
CONCLUSION: Results from this study indicates that the metabolic resistance mechanism is highly implicated in the resistance to different classes of insecticide in Ikorodu and this should be taken into consideration when implementing vector control activities in this area.
METHOD: Several research methodologies were incorporated into the current study, and a review was carried out using PRISMA as a guide. The publications for this study were chosen from two prominent databases, Scopus and Web of Science. All of the studies were assessed, reviewed, and evaluated independently by two reviewers. The meta-analysis tool, Review Manager (RevMan Copenhagen Version 5.4.1), was used to record the extracted data for the meta-analysis. Moran's I 2 and a funnel plot were utilized to measure heterogeneity, and publication bias was investigated. A 95% confidence interval (CI) and overall risk difference (RD) were estimated using a random-effects model.
RESULT AND DISCUSSION: As a consequence of the search efforts, a total of 46 articles were selected for inclusion in the systematic review and meta-analysis. This review was divided into five major themes, based on a thematic analysis: (i) hatching rate, (ii) development time, (iii) longevity, (iv) survival rate, and (v) wing morphology. In addition, the development time, survival rate, and wing morphology revealed significantly higher risk differences between the maximum and minimum temperatures (RD: 0.26, 95% CI: 0.16, 0.36; p = < 0.00001; RD: 0.10, 95% CI: 0.05, 0.14; p < 0.0001; and RD: 0.07, 95% CI: 0.02, 0.12; p = 0.006, respectively). This study makes several substantial contributions to the body of knowledge and to practical applications. Finally, a number of recommendations are made at the conclusion of this research for the future reference of researchers.