Displaying all 14 publications

Abstract:
Sort:
  1. Tong KL, Mahmood Zuhdi AS, Wan Ahmad WA, Vanhoutte PM, de Magalhaes JP, Mustafa MR, et al.
    Int J Mol Sci, 2018 May 15;19(5).
    PMID: 29762500 DOI: 10.3390/ijms19051467
    Circulating microRNAs (miRNAs) hold great potential as novel diagnostic markers for acute coronary syndrome (ACS). This study sought to identify plasma miRNAs that are differentially expressed in young ACS patients (mean age of 38.5 ± 4.3 years) and evaluate their diagnostic potentials. Small RNA sequencing (sRNA-seq) was used to profile plasma miRNAs. Discriminatory power of the miRNAs was determined using receiver operating characteristic (ROC) analysis. Thirteen up-regulated and 16 down-regulated miRNAs were identified in young ACS patients. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) validation showed miR-183-5p was significantly up-regulated (8-fold) in ACS patients with non-ST-segment elevated myocardial infarction (NSTEMI) whereas miR-134-5p, miR-15a-5p, and let-7i-5p were significantly down-regulated (5-fold, 7-fold and 3.5-fold, respectively) in patients with ST-segment elevated myocardial infarction (STEMI), compared to the healthy controls. MiR-183-5p had a high discriminatory power to differentiate NSTEMI patients from healthy controls (area under the curve (AUC) of ROC = 0.917). The discriminatory power for STEMI patients was highest with let-7i-5p (AUC = 0.833) followed by miR-134-5p and miR-15a-5p and this further improved (AUC = 0.935) with the three miRNAs combination. Plasma miR-183-5p, miR-134-5p, miR-15a-5p and let-7i-5p are deregulated in STEMI and NSTEMI and could be potentially used to discriminate the two ACS forms.
    Matched MeSH terms: ST Elevation Myocardial Infarction/blood*; Non-ST Elevated Myocardial Infarction/blood*
  2. Sheikh MK, Bahari MB, Yusoff NM, Knight A
    J Coll Physicians Surg Pak, 2009 Aug;19(8):514-7.
    PMID: 19651016 DOI: 08.2009/JCPSP.514517
    The purpose of this study was to find out the association between blood group B and Myocardial Infarction (MI) in sample population in Malaysia.
    Matched MeSH terms: Myocardial Infarction/blood*
  3. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, et al.
    Biosens Bioelectron, 2015 Aug 15;70:209-20.
    PMID: 25841117 DOI: 10.1016/j.bios.2015.03.037
    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. Data from World Health Organization (WHO) accounted 30% of global death annually and expected more than 23 million die annually by 2030. This fatal effects trigger the need of appropriate biomarkers for early diagnosis, thus countermeasure can be taken. At the moment, the most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as 'gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Several ways of diagnostics have been formulated, which include enzyme-linked immunosorbent assay, chemiluminescent, fluoro-immunoassays, electrical detections, surface plasmon resonance, and colorimetric protein assay. This review represents and elucidates the strategies, methods and detection levels involved in these diagnostics on cardiac superior biomarkers. The advancement, sensitivity, and limitations of each method are also discussed. In addition, it concludes with a discussion on the point-of care (POC) assay for a fast, accurate and ability of handling small sample measurement of cardiac biomarker.
    Matched MeSH terms: Myocardial Infarction/blood*
  4. Rahim MAA, Rahim ZHA, Ahmad WAW, Bakri MM, Ismail MD, Hashim OH
    Acta Pharmacol Sin, 2018 Jul;39(7):1197-1207.
    PMID: 29417940 DOI: 10.1038/aps.2017.141
    An early intervention using biomarkers to predict acute myocardial infarction (AMI) will effectively reduce global heart attack incidence, particularly among high-risk patients with type 2 diabetes mellitus (T2DM). This study attempted to identify potential biomarkers by detecting changes in the levels of plasma proteins in T2DM patients following onset of AMI in comparison with those without AMI. Volunteer T2DM patients without AMI (control; n=10) and T2DM patients with AMI (n=10) were recruited. Plasma samples from these patients were evaluated via two-dimensional gel electrophoresis (2DE) to screen for proteins with level changes between the two groups. The abundance of spots on gel images was analyzed using Progenesis SameSpots and subjected to false discovery rate (FDR) analysis. Protein spots with statistically significant changes of at least 1.5 fold were selected for mass spectrometry (MS) analysis. Due to strong cardiac connections, tetranectin and titin were evaluated by enzymelinked immunosorbent assay (ELISA). The adjusted P-values and fold changes between the two groups resulted in identification of 34 protein spots with significantly altered abundance. Upon MS analysis, 17 plasma proteins were identified: tetranectin, titin, clusterin, haptoglobin, myosin-13, zinc fnger protein 445, DNA repair protein RAD50, serum albumin, apolipoprotein A-IV, caspase-6, aminoacyl tRNA synthase complex-interacting multifunctional protein 1, serotransferrin, retinol-binding protein 4, transthyretin, alpha-1-antitrypsin, apolipoprotein A-I and serum amyloid A. Comparable patterns of changes in tetranectin and titin between the control and AMI groups were confirmed using ELISA. In summary, tetranectin and titin in plasma appeared to be closely associated with the onset of AMI among T2DM patients and can be used as potential biomarkers for prediction of a cardiac event, though this requires validation in a prospective cohort study.
    Matched MeSH terms: Myocardial Infarction/blood*
  5. Sthaneshwar P, Jamaluddin FA, Fan YS
    Pathology, 2010;42(5):454-6.
    PMID: 20632822 DOI: 10.3109/00313025.2010.493861
    The aim of this study was to evaluate the distribution of cardiac troponin I (cTnI) values, measured by the ADVIA TnI-Ultra method in a multi-ethnic group and to determine the imprecision of the assay.
    Matched MeSH terms: Myocardial Infarction/blood*
  6. Wickramatilake CM, Mohideen MR, Pathirana C
    Indian Heart J, 2017 02 12;69(2):291.
    PMID: 28460787 DOI: 10.1016/j.ihj.2017.02.002
    Matched MeSH terms: ST Elevation Myocardial Infarction/blood
  7. Lim WY, Thevarajah TM, Goh BT, Khor SM
    Biosens Bioelectron, 2019 Mar 01;128:176-185.
    PMID: 30685097 DOI: 10.1016/j.bios.2018.12.049
    The early detection of acute myocardial infarction (AMI) upon the onset of chest pain symptoms is crucial for patient survival. However, this detection is challenging, particularly without a persistent elevation of ST-segment reflected in an electrocardiogram or in blood tests. A majority of the available point-of-care testing devices allow accurate and rapid diagnosis of AMI. However, AMI diagnosis is reliable only at intermediate and later stages, with myocardial injury (> 6 h) and MI, based on the expression of specific cardiac biomarkers including troponin I or T (cTnI or cTnT), creatine kinase-MB (CK-MB), and myoglobin. Diagnosis at the early myocardial ischemia stage is not possible. To overcome this limitation, a sensitive and rapid microfluidic paper-based device (µPAD) was developed for the simultaneous detection of multiple cardiac biomarkers for the early and late diagnosis of AMI. The glycogen phosphorylase isoenzyme BB (GPBB) was detected during early (within first 4 h) ischemic myocardial injury. On the same µPAD platform, detection of prolonged elevation of levels of cTnT and CK-MB, which are only produced 6 h after the onset of chest pain in human serum, was possible. Sandwich immunoassay performed on the µPAD achieved reproducibility (RSD approximately 10% and intra-and inter-day precision (CV 10-20%, 99th percentile), as well as consistently stable test results for 28 days, with strong correlation (r2= 0.962), using the standard Siemens Centaur XPT Immunoassay system. The present findings indicate the potential of the µPAD platform as a point-of-care device for the early diagnosis and prognosis of AMI.
    Matched MeSH terms: Myocardial Infarction/blood*
  8. Lim WY, Goh CH, Thevarajah TM, Goh BT, Khor SM
    Biosens Bioelectron, 2020 Jan 01;147:111792.
    PMID: 31678828 DOI: 10.1016/j.bios.2019.111792
    Recently, surface enhanced Raman scattering (SERS) has attracted much attention in medical diagnosis applications owing to better detection sensitivity and lower limit of detection (LOD) than colorimetric detection. In this paper, a novel calibration-free SERS-based μPAD with multi-reaction zones for simultaneous quantitative detection of multiple cardiac biomarkers - GPBB, CK-MB and cTnT for early diagnosis and prognosis of acute myocardial infarction (AMI) are presented. Three distinct Raman probes were synthesised, subsequently conjugated with respective detecting antibodies and used as SERS nanotags for cardiac biomarker detection. Using a conventional calibration curve, quantitative simultaneous measurement of multiple cardiac biomarkers on SERS-based μPAD was performed based on the characteristic Raman spectral features of each reporter used in different nanotags. However, a calibration free point-of-care testing device is required for fast screening to rule-in and rule-out AMI patients. Partial least squares predictive models were developed and incorporated into the immunosensing system, to accurately quantify the three unknown cardiac biomarkers levels in serum based on the previously obtained Raman spectral data. This method allows absolute quantitative measurement when conventional calibration curve fails to provide accurate estimation of cardiac biomarkers, especially at low and high concentration ranges. Under an optimised condition, the LOD of our SERS-based μPAD was identified at 8, 10, and 1 pg mL-1, for GPBB, CK-MB and cTnT, respectively, which is well below the clinical cutoff values. Therefore, this proof-of-concept technique shows significant potential for highly sensitive quantitative detection of multiplex cardiac biomarkers in human serum to expedite medical decisions for enhanced patient care.
    Matched MeSH terms: Myocardial Infarction/blood*
  9. Gupta ED, Sakthiswary R
    Asian Cardiovasc Thorac Ann, 2014 May;22(4):397-401.
    PMID: 24771726 DOI: 10.1177/0218492313484917
    The objectives of this study were to determine the incidence of a myocardial infarction "false alarm" and evaluate the efficacy of the initial electrocardiogram and cardiac enzymes in diagnosing myocardial infarction in Malaysia.
    Matched MeSH terms: Myocardial Infarction/blood
  10. Garg M, Khanna D, Kalra S, Balakumar P
    Fundam Clin Pharmacol, 2016 Oct;30(5):394-405.
    PMID: 27148865 DOI: 10.1111/fcp.12204
    Fenofibrate and rosuvastatin at low doses might have experimental pleiotropic benefits. This study investigated the combined effect of low doses of fenofibrate and rosuvastatin in isoproterenol-induced experimental myocardial infarction. Rats administered isoproterenol (85 mg/kg/day, s.c.) for 2 days (day 29 and day 30) of 30 days experimental protocol developed significant myocardial infarction that was accompanied with high myocardial oxidative stress and lipid peroxidation, elevated serum markers of cardiac injury, lipid abnormalities, and elevated circulatory levels of C-reactive protein. Pretreatment with low doses of fenofibrate (30 mg/kg/day p.o., 30 days) and rosuvastatin (2 mg/kg/day p.o., 30 days) both alone or in combination markedly prevented isoproterenol-induced myocardial infarction and associated abnormalities while the low-dose combination of fenofibrate and rosuvastatin was more effective. Histopathological study in isoproterenol control rat heart showed necrosis with edema and acute inflammation at the margins of necrotic area. The rat heart from low-dose fenofibrate and rosuvastatin pretreated group showed scanty inflammation and no ischemia. In conclusion, fenofibrate and rosuvastatin pretreatment in low doses might have a therapeutic potential to prevent the pathogenesis of myocardial infarction. Moreover, their combined treatment option might offer superior therapeutic benefits via a marked reduction in myocardial infarct size and oxidative stress, suggesting a possibility of their pleiotropic cardioprotective action at low doses.
    Matched MeSH terms: Myocardial Infarction/blood
  11. Devereaux PJ, Lamy A, Chan MTV, Allard RV, Lomivorotov VV, Landoni G, et al.
    N Engl J Med, 2022 Mar 03;386(9):827-836.
    PMID: 35235725 DOI: 10.1056/NEJMoa2000803
    BACKGROUND: Consensus recommendations regarding the threshold levels of cardiac troponin elevations for the definition of perioperative myocardial infarction and clinically important periprocedural myocardial injury in patients undergoing cardiac surgery range widely (from >10 times to ≥70 times the upper reference limit for the assay). Limited evidence is available to support these recommendations.

    METHODS: We undertook an international prospective cohort study involving patients 18 years of age or older who underwent cardiac surgery. High-sensitivity cardiac troponin I measurements (upper reference limit, 26 ng per liter) were obtained 3 to 12 hours after surgery and on days 1, 2, and 3 after surgery. We performed Cox analyses using a regression spline that explored the relationship between peak troponin measurements and 30-day mortality, adjusting for scores on the European System for Cardiac Operative Risk Evaluation II (which estimates the risk of death after cardiac surgery on the basis of 18 variables, including age and sex).

    RESULTS: Of 13,862 patients included in the study, 296 (2.1%) died within 30 days after surgery. Among patients who underwent isolated coronary-artery bypass grafting or aortic-valve replacement or repair, the threshold troponin level, measured within 1 day after surgery, that was associated with an adjusted hazard ratio of more than 1.00 for death within 30 days was 5670 ng per liter (95% confidence interval [CI], 1045 to 8260), a level 218 times the upper reference limit. Among patients who underwent other cardiac surgery, the corresponding threshold troponin level was 12,981 ng per liter (95% CI, 2673 to 16,591), a level 499 times the upper reference limit.

    CONCLUSIONS: The levels of high-sensitivity troponin I after cardiac surgery that were associated with an increased risk of death within 30 days were substantially higher than levels currently recommended to define clinically important periprocedural myocardial injury. (Funded by the Canadian Institutes of Health Research and others; VISION Cardiac Surgery ClinicalTrials.gov number, NCT01842568.).

    Matched MeSH terms: Myocardial Infarction/blood
  12. Khalil MI, Tanvir EM, Afroz R, Sulaiman SA, Gan SH
    Biomed Res Int, 2015;2015:286051.
    PMID: 26064893 DOI: 10.1155/2015/286051
    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
    Matched MeSH terms: Myocardial Infarction/blood*
  13. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Myocardial Infarction/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links