Displaying publications 1 - 20 of 22 in total

  1. Abd-Aziz N, Poh CL
    Transl Res, 2021 11;237:98-123.
    PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008
    Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
    Matched MeSH terms: Oncolytic Virotherapy*
  2. Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, et al.
    Semin Cancer Biol, 2022 Nov;86(Pt 3):1122-1142.
    PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013
    Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
    Matched MeSH terms: Oncolytic Virotherapy*
  3. Dyer A, Baugh R, Chia SL, Frost S, Iris, Jacobus EJ, et al.
    Cancer Gene Ther, 2019 03;26(3-4):59-73.
    PMID: 30177818 DOI: 10.1038/s41417-018-0042-1
    The 11th International Oncolytic Virus Conference (IOVC) was held from April 9-12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development-from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.
    Matched MeSH terms: Oncolytic Virotherapy/methods*; Oncolytic Virotherapy/trends
  4. Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, et al.
    Cancer Invest, 2019;37(8):393-414.
    PMID: 31502477 DOI: 10.1080/07357907.2019.1660887
    Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
    Matched MeSH terms: Oncolytic Virotherapy/adverse effects; Oncolytic Virotherapy/trends*
  5. Omar AR, Ideris A, Ali AM, Othman F, Yusoff K, Abdullah JM, et al.
    Malays J Med Sci, 2003 Jan;10(1):4-12.
    PMID: 23365495
    Newcastle disease virus (NDV) is one of the most economically important avian virus which affects the poultry industry worldwide. Although NDV is being very actively studied in Malaysia, there are still no studies on its potential as an anticancer agent, a new approach to treating cancer known as virotherapy. Currently, a collaborative research is being undertaken between Universiti Putra Malaysia (UPM), Universiti Sains Malaysia (USM) and Majlis Kanser Nasional (MAKNA) in characterising various local NDV isolates as anticancer agent. This paper describes an overview of the research that have been carried out worldwide in the use of NDV for cancer treatment and also some of our findings in characterising local NDVs with oncolytic properties.
    Matched MeSH terms: Oncolytic Virotherapy
  6. Alabsi AM, Ali R, Ideris A, Omar AR, Bejo MH, Yusoff K, et al.
    Leuk. Res., 2012 May;36(5):634-45.
    PMID: 22133641 DOI: 10.1016/j.leukres.2011.11.001
    Newcastle disease virus (NDV) is a member of the Paramyxoviridae that has caused severe economic losses in poultry industry worldwide. Several strains of NDV were reported to induce cytolysis to cancerous cell lines. It has prompted much interest as anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. In this study, two NDV strains, viserotropic-velogenic strain AF2240 and lentogenic strain V4-UPM, showed cytolytic activity and apoptosis induction against Mouse myelomoncytic leukemia (WEHI 3B). The cytolytic effects of NDV strains were determined using microtetrazolium (MTT) assay. The cytolytic dose - fifty percent (CD(50)) were 2 and 8HAU for AF2240 and V4-UPM strains, respectively. Cells treated with NDV strains showed apoptotic features compared to the untreated cells under fluorescence microscope. NDV induced activation of caspase-3 and DNA laddering in agarose gel electrophoresis which confirmed the apoptosis. The anti-leukemic activity of both strains was evaluated on myelomoncytic leukemia BALB/c mice. The results indicated that both NDV strains significantly decreased liver and spleen weights. It also decreased blasts cell percentage in blood, bone marrow and spleen smears of treated mice (p<0.05). Histopathological studies for spleen and liver confirmed the hematological results of blood and bone marrow. From the results obtained, the exposure to both NDV stains AF2240 and V4-UPM showed similar results for Ara-c. In conclusion NDV strains AF2240 and V4-UPM can affect WEHI 3B leukemia cells in vitro and in vivo.
    Matched MeSH terms: Oncolytic Virotherapy*
  7. Lam HY, Yeap SK, Pirozyan MR, Omar AR, Yusoff K, Suraini AA, et al.
    J. Biomed. Biotechnol., 2011;2011:718710.
    PMID: 22131816 DOI: 10.1155/2011/718710
    Newcastle disease virus (NDV) is an avian virus that causes deadly infection to over 250 species of birds, including domestic and wild-type, thus resulting in substantial losses to the poultry industry worldwide. Many reports have demonstrated the oncolytic effect of NDV towards human tumor cells. The interesting aspect of NDV is its ability to selectively replicate in cancer cells. Some of the studies have undergone human clinical trials, and favorable results were obtained. Therefore, NDV strains can be the potential therapeutic agent in cancer therapy. However, investigation on the therapeutic perspectives of NDV, especially human immunological effects, is still ongoing. This paper provides an overview of the current studies on the cytotoxic and anticancer effect of NDV via direct oncolysis effects or immune stimulation. Safety of NDV strains applied for cancer immunotherapy is also discussed in this paper.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  8. Zulkifli MM, Ibrahim R, Ali AM, Aini I, Jaafar H, Hilda SS, et al.
    Neurol Res, 2009 Feb;31(1):3-10.
    PMID: 18937888 DOI: 10.1179/174313208X325218
    Newcastle disease virus (NDV) is a virus of paramyxovirus family and lately has been studied for the treatment of cancer in human. In this study, we successfully determined the oncolysis potential of NDV vaccine, V4UPM tested on the human glioblastoma multiform cell line (DBTRG.05MG) and human glioblastoma astrocytoma cell line (U-87MG) in vitro and in vivo. The V4UPM strain is a modified V4 strain developed as thermostable feed pellet vaccine for poultry.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  9. Assayaghi RM, Alabsi AM, Swethadri G, Ali AM
    Asian Pac J Cancer Prev, 2019 Oct 01;20(10):3071-3075.
    PMID: 31653156 DOI: 10.31557/APJCP.2019.20.10.3071
    BACKGROUND: Treatment of cancer with chemo-radiotherapy causes severe side effects due to cytotoxic effects towards normal tissues which often results in morbidity. Therefore, developing anticancer agents which can selectively target the cancer cells and cause less side effects are the main objectives of the new therapeutic strategies for treatment advanced or metastatic cancers. Newcastle disease virus strains AF2240 and V4-UPM were shown to be cytolytic against various cancer cells in-vitro and very effective as antileukemicagents.

    METHODS: 45 rats at 6 weeks of age, were randomly assigned to nine groups with 5 rats in each group, both azoxymethane (AOM) and 5-Fluorouracil (5-FU) were given to rats according to the body weight. NDV virus strains (AF2240 and V4-UPM) doses were determined to rats according to CD50 resulted from MTT assay. After 8 doses of NDV strians and 5-FU, tissue sections preparations and histopathological study of rats' organs were done.

    RESULTS: In this article morphological changes of rats' organs, especially in livers, after treatment with a colon carcinogen (azoxymethane) and Newcastle disease virus strains have been recorded. We observed liver damage caused by AOM evidenced by morphological changes and enzymatic elevation were protected by the oncolytic viruses sections. Also we found that combination treatment NDV with 5-FU had greater antitumor efficacy than treatment with NDV or 5-FU alone.

    CONCLUSION: We noted morphological changes in liver and other rats' organs due to a chemical carcinogen and their protection by NDV AF2240 and NDV V4-UPM seems to be most protective.

    Matched MeSH terms: Oncolytic Virotherapy*
  10. Ali- Saeed R, Alabsi AM, Ideris A, Omar AR, Yusoff K, Ali AM
    Asian Pac J Cancer Prev, 2019 Mar 26;20(3):757-765.
    PMID: 30909682
    Aim: Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest
    of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells.
    Methods: In this investigation, the proliferation of brain tumor cell line, glioblastoma multiform (DBTRG.05MG)
    induced by NDV strain AF2240 was evaluated in-vitro, by using MTT proliferation assay. Furthermore, Cytological
    observations were studied using fluorescence microscopy and transmission electron microscopy, DNA laddering in
    agarose gel electrophoresis assay used to detect the mode of cell death and analysis of the cellular DNA content by
    flowcytometery. Results: MTT proliferation assay, Cytological observations using fluorescence microscopy and
    transmission electron microscopy show the anti-proliferation effect and apoptogenic features of NDV on DBTRG.05MG.
    Furthermore, analysis of the cellular DNA content showed that there was a loss of treated cells in all cell cycle phases
    (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Conclusion: It could be concluded
    that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing
    of time and virus titer.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  11. Nor Aini Lubis, Mhd Zain, Mohd Nasharudin, Razak, Mariatulqabtiah, Abdul Razak
    Cervical cancer is one of the leading causal cancer-related fatalities in the world. Cervical cancer patients can be treated by conventional treatment such as surgery, radiotherapy, chemotherapy, medications and combination treatments. Currently, more targeted treatments are being developed to cure cervical cancer. The treatments include immunotherapy, virotherapy and gene therapy which will be discussed in this paper. In immunotherapy, the synergy of CTLA-4 suppression and PD-1/PDL-1 immune checkpoint inhibition targeting their corresponding pathways enhanced the human immune system resulting a promising treatment effects. Oncolytic viruses such as Newcastle disease virus selectively infect and kill cancerous cells/tissues without harming normal cells/tissues. This character has made them a potential modality in combating cancer which popularly known as oncolytic virotherapy. Gene therapy delivers modified genetic materials to the target cancer cells via viral and non-viral vectors. It is used to target the abnormal gene, to increase cells’ susceptibility towards drugs or conventional therapy, to induce tumour cells apoptosis, to enhance tumour cell immunogenicity recognition and to inhibit the oncogene expression. The objective of this minireview is to add to the general knowledge on aforementioned therapeutic strategies against cervical cancer.
    Matched MeSH terms: Oncolytic Virotherapy
  12. Lam HY, Yusoff K, Yeap SK, Subramani T, Abd-Aziz S, Omar AR, et al.
    Int J Med Sci, 2014;11(12):1240-7.
    PMID: 25317070 DOI: 10.7150/ijms.8170
    Immunotherapy has raised the attention of many scientists because it hold promise to be an attractive therapeutic strategy to treat a number of disorders. In this study, the immunomodulatory effects of low titers of Newcastle disease virus (NDV) AF2240 on human peripheral blood mononuclear cells (PBMC) were analyzed. We evaluated cytokine secretion and PBMC activation by cell proliferation assay, immunophenotyping and enzyme linked immunosorbent assay. The proliferation of the human PBMC was measured to be 28.5% and 36.5% upon treatment with 8 hemaglutinin unit (HAU) and 2 HAU of NDV respectively. Interestingly, the percentage of cells with activating markers CD16 and CD56 were increased significantly. Furthermore, the intracellular perforin and granzyme levels were also increased upon virus infection. Human PBMC treated with NDV titer 8 HAU was found to stimulate the highest level of cytokine production including interferon-γ, interleukin-2 and interleukin-12. The release of these proteins contributes to the antitumor effect of PBMC against MCF-7 breast cancer cells. Based on the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, activated human PBMC showed high cytolytic efficiency towards human breast tumor cells. In summary, NDV was able to stimulate PBMC proliferation, cytokine secretion and cytolytic activity.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  13. Mohamed Amin Z, Che Ani MA, Tan SW, Yeap SK, Alitheen NB, Syed Najmuddin SUF, et al.
    Sci Rep, 2019 Sep 30;9(1):13999.
    PMID: 31570732 DOI: 10.1038/s41598-019-50222-z
    The Newcastle disease virus (NDV) strain AF2240 is an avian avulavirus that has been demonstrated to possess oncolytic activity against cancer cells. However, to illicit a greater anti-cancer immune response, it is believed that the incorporation of immunostimulatory genes such as IL12 into a recombinant NDV backbone will enhance its oncolytic effect. In this study, a newly developed recombinant NDV that expresses IL12 (rAF-IL12) was tested for its safety, stability and cytotoxicity. The stability of rAF-IL12 was maintained when passaged in specific pathogen free (SPF) chicken eggs from passage 1 to passage 10; with an HA titer of 29. Based on the results obtained from the MTT cytotoxic assay, rAF-IL12 was determined to be safe as it only induced cytotoxic effects against normal chicken cell lines and human breast cancer cells while sparing normal cells. Significant tumor growth inhibition (52%) was observed in the rAF-IL12-treated mice. The in vivo safety profile of rAF-IL12 was confirmed through histological observation and viral load titer assay. The concentration and presence of the expressed IL12 was quantified and verified via ELISA assay. In summary, rAF-IL12 was proven to be safe, selectively replicating in chicken and cancer cells and was able to maintain its stability throughout several passages; thus enhancing its potential as an anti-breast cancer vaccine.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  14. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  15. Chia SL, Lei J, Ferguson DJP, Dyer A, Fisher KD, Seymour LW
    Virology, 2017 05;505:162-171.
    PMID: 28260622 DOI: 10.1016/j.virol.2017.02.011
    Enadenotucirev (EnAd) is a group B oncolytic adenovirus developed for systemic delivery and currently undergoing clinical evaluation for advanced cancer therapy. For differentiated carcinomas, systemic delivery would likely expose virus particles to the basolateral surface of cancer cells rather than the apical surface encountered during natural infection. Here, we compare the ability of EnAd and adenovirus type-5 (Ad5) to infect polarised colorectal carcinoma cells from the apical or basolateral surfaces. Whereas Ad5 infection was more efficient via the apical than basolateral surface, EnAd readily infected cells from either surface. Progeny particles from EnAd were released preferentially via the apical surface for all cell lines and routes of infection. These data further support the utility of group B adenoviruses for systemic delivery and suggest that progeny virus are more likely to be released into the tumour rather than back through the basolateral surface into the blood stream.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  16. Raihan J, Ahmad U, Yong YK, Eshak Z, Othman F, Ideris A
    BMC Cancer, 2019 Apr 04;19(1):315.
    PMID: 30947706 DOI: 10.1186/s12885-019-5516-5
    BACKGROUND: Different strains of Newcastle disease virus (NDV) worldwide proved to have tumouricidal activity in several types of cancer cells. However, the possible anti-cancer activity of Malaysian NDV AF2240 strain and its mechanism of action remains unknown. The ability of cytokine-related apoptosis-inducing NDV AF2240 to treat breast cancer was investigated in the current study.

    METHODS: A total of 90 mice were used and divided into 15 groups, each group comprising of 6 mice. Tumour, body weight and mortality of the mice were determined throughout the experiment, to observe the effect of NDV and NDV + tamoxifen treatments on the mice. In addition, the toxic effect of the treatments was determined through liver function test. In order to elucidate the involvement of cytokine production induced by NDV, a total of six cytokines, i.e. IL-6, IFN-γ, MCP-1, IL-10, IL12p70 and TNF-α were measured using cytometric bead array assay (plasma) and enzyme-linked immunosorbent spot (isolated splenocytes).

    RESULTS: The results demonstrated that 4 T1 breast cancer cells in allotransplanted mice treated with AF2240 showed a noticeable inhibition of tumour growth and induce apoptotic-related cytokines.

    CONCLUSIONS: NDV AF2240 suppression of breast tumour growth is associated with induction of apoptotic-related cytokines. It would be important to further investigate the molecular mechanism underlaying cytokines production by Newcastle disease virus.

    Matched MeSH terms: Oncolytic Virotherapy/methods*
  17. Lim KP, Zainal NS
    Front Mol Biosci, 2021;8:623475.
    PMID: 33937323 DOI: 10.3389/fmolb.2021.623475
    With the regulatory approval of Provenge and Talimogene laherparepvec (T-VEC) for the treatment of metastatic prostate cancer and advanced melanoma respectively, and other promising clinical trials outcomes, cancer vaccine is gaining prominence as a cancer therapeutic agent. Cancer vaccine works to induce T cell priming, expansion, and infiltration resulting in antigen-specific cytotoxicity. Such an approach that can drive cytotoxicity within the tumor could complement the success of checkpoint inhibitors as tumors shown to have high immune cell infiltration are those that would respond well to these antibodies. With the advancements in cancer vaccine, methods to monitor and understand how cancer vaccines modify the immune milieu is under rapid development. This includes using ELISpot and intracellular staining to detect cytokine secretion by activated T cells; tetramer and CyTOF to quantitate the level of antigen specific T cells; proliferation and cell killing assay to detect the expansion of T cell and specific killing activity. More recently, T cell profiling has provided unprecedented detail on immune cell subsets and providing clues to the mechanism involved in immune activation. Here, we reviewed cancer vaccines currently in clinical trials and highlight available techniques in monitoring the clinical response in patients.
    Matched MeSH terms: Oncolytic Virotherapy
  18. Ghrici M, El Zowalaty M, Omar AR, Ideris A
    Oncol Rep, 2013 Sep;30(3):1035-44.
    PMID: 23807159 DOI: 10.3892/or.2013.2573
    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
    Matched MeSH terms: Oncolytic Virotherapy*
  19. Ch'ng WC, Stanbridge EJ, Yusoff K, Shafee N
    J Interferon Cytokine Res, 2013 Jul;33(7):346-54.
    PMID: 23506478 DOI: 10.1089/jir.2012.0095
    Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells.
    Matched MeSH terms: Oncolytic Virotherapy/methods*
  20. Mustafa Z, Shamsuddin HS, Ideris A, Ibrahim R, Jaafar H, Ali AM, et al.
    Biomed Res Int, 2013;2013:248507.
    PMID: 23586025 DOI: 10.1155/2013/248507
    Oncolytic viruses have been extensively evaluated for anticancer therapy because this virus preferentially infects cancer cells without interfering with normal cells. Newcastle Disease Virus (NDV) is an avian virus and one of the intensively studied oncolytic viruses affecting many types of cancer including glioma. Nevertheless, the capability of NDV infection on heterogeneous glioma tissue in a cerebrospinal fluid atmosphere has never been reported. Recently, Rac1 is reported to be required for efficient NDV replication in human cancer cells and established a link between tumourigenesis and sensitivity to NDV. Rac1 is a member of the Rho GTPases involved in the regulation of the cell migration and cell-cycle progression. Rac1 knockdown leads to significant inhibition of viral replication. In this work, we demonstrated that NDV treatment led to significant reduction of tumour tissue viability of freshly isolated heterogeneous human brain tumour slice, known as an ex vivo glioma acute slice (EGAS). Analysis of gene expression indicated that reduced tissue viability was associated with downregulation of Rac1. However, the viability reduction was not persistent. We conclude that NDV treatment induced EGAS viability suppression, but subsequent downregulation of Rac1 gene may reduce the NDV replication and lead to regrowth of EGAS tissue.
    Matched MeSH terms: Oncolytic Virotherapy
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links