Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Jorquera R, González C, Clausen P, Petersen B, Holmes DS
    Database (Oxford), 2018 01 01;2018:1-6.
    PMID: 30239665 DOI: 10.1093/database/bay089
    Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases.
    Matched MeSH terms: Open Reading Frames/genetics*
  2. Atif A. B., Halim-Fikri A H, Zilfalil BA
    MyJurnal
    In the human genome, point variations are most common (Nachman & Crowell, 2000) and well understood. These variations, when existing in more than 1% of the population, is referred to as
    Single Nucleotide Polymorphism (SNP) and can fall in the coding region of a gene, non coding region or intergenic regions.
    Matched MeSH terms: Open Reading Frames
  3. Choo SW, Ang MY, Fouladi H, Tan SY, Siow CC, Mutha NV, et al.
    BMC Genomics, 2014;15:600.
    PMID: 25030426 DOI: 10.1186/1471-2164-15-600
    Helicobacter is a genus of Gram-negative bacteria, possessing a characteristic helical shape that has been associated with a wide spectrum of human diseases. Although much research has been done on Helicobacter and many genomes have been sequenced, currently there is no specialized Helicobacter genomic resource and analysis platform to facilitate analysis of these genomes. With the increasing number of Helicobacter genomes being sequenced, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of diseases caused by Helicobacter pathogens.
    Matched MeSH terms: Open Reading Frames
  4. Khaw YS, Chan YF, Jafar FL, Othman N, Chee HY
    Front Microbiol, 2016;7:543.
    PMID: 27199901 DOI: 10.3389/fmicb.2016.00543
    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
    Matched MeSH terms: Open Reading Frames
  5. Ishige T, Gakuhari T, Hanzawa K, Kono T, Sunjoto I, Sukor JR, et al.
    PMID: 26075477 DOI: 10.3109/19401736.2015.1033694
    Here we report the complete mitochondrial genome of the Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae), which was determined using next-generation sequencing. The mitochondrial genome is 16,344 bp in length containing 13 protein-coding genes, 21 tRNAs and 2 rRNAs. It shows the typical pattern of bovine mitochondrial arrangement. Phylogenetic tree analysis of complete mtDNA sequences showed that Bornean banteng is more closely related to gaur than to other banteng subspecies. Divergence dating indicated that Bornean banteng and gaur diverged from their common ancestor approximately 5.03 million years ago. These results suggest that Bornean banteng might be a distinct species in need of conservation.
    Matched MeSH terms: Open Reading Frames
  6. Gan HY, Noor ME, Saari NA, Musa N, Mustapha B, Usup G, et al.
    Genome Announc, 2015;3(2).
    PMID: 25814609 DOI: 10.1128/genomeA.00210-15
    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified.
    Matched MeSH terms: Open Reading Frames
  7. Danish-Daniel M, Ming GH, Mohd Noor ME, Sung YY, Usup G
    Genome Announc, 2016 Oct 6;4(5).
    PMID: 27795265 DOI: 10.1128/genomeA.01106-16
    Bacillus sp. strain UMTAT18 was isolated from the harmful dinoflagellate Alexandrium tamiyavanichii Its genome consists of 5,479,367 bp with 5,546 open reading frames, 102 tRNAs, and 29 rRNAs. Gene clusters for biosynthesis of nonribosomal peptides, bacteriocin, and lantipeptide were identified. It also contains siderophore and genes related to stress tolerance.
    Matched MeSH terms: Open Reading Frames
  8. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
    Matched MeSH terms: Open Reading Frames
  9. Hameed IH, Jebor MA, Ommer AJ, Abdulzahra AI, Yoke C
    PMID: 25090379 DOI: 10.3109/19401736.2014.945576
    Samples of 100 random healthy unrelated Iraqi male persons from the Arab ethnic group of Iraqi population were collected for mtDNA coding region sequencing by using the Sanger technique and to establish the degree of variation characteristic of a fragment. Portion of coding region encompassing positions 11,719-12,184 was amplified in accordance with the Anderson reference sequence. PCR products were purified by EZ-10 spin column then sequenced and detected by using the ABI 3130xL DNA Analyzer. This is to intend the detection of polymorphisms of mtDNA. Four new polymorphic positions 11,741, 11,756, 11,878, and 12,133 are described which may be suitable in the future to be the sources for human identification purpose in Iraq. The obtained data can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants. The calculated value GD = 0.95 and RMP = 0.048 of the genetic diversity should be understood as high in the context of coding function of the analysed DNA fragment. The relatively high gene diversity and a relatively low random match probability were observed in this study.
    Matched MeSH terms: Open Reading Frames*
  10. Marmey P, Bothner B, Jacquot E, de Kochko A, Ong CA, Yot P, et al.
    Virology, 1999 Jan 20;253(2):319-26.
    PMID: 9918890
    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus and a member of the Caulimoviridae family and closely related to viruses in the Badnavirus genus. The coat protein of RTBV is part of the large polyprotein encoded by open reading frame 3 (ORF3). ORF3 of an RTBV isolate from Malaysia was sequenced (accession no. AF076470) and compared with published sequences for the region that encodes the coat protein or proteins. Molecular mass of virion proteins was determined by mass spectrometry (matrix-assisted laser desorption/ionization-TOF) performed on purified virus particles from three RTBV isolates from Malaysia. The N- and C-terminal amino acid sequences of the coat protein were deduced from the mass spectral analysis, leading to the conclusion that purified virions contain a single coat protein of 37 kDa. The location of the coat protein domain in ORF3 was reinforced as a result of immunodetection reactions using antibodies raised against six different segments of ORF3 using Western immunoblots after SDS-PAGE and isoelectrofocusing of proteins purified from RTBV particles. These studies demonstrate that RTBV coat protein is released from the polyprotein as a single coat protein of 37 kDa.
    Matched MeSH terms: Open Reading Frames*
  11. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Open Reading Frames/genetics
  12. Balakrishnan KN, Abdullah AA, Bala J, Abba Y, Sarah SA, Jesse FFA, et al.
    Infect Genet Evol, 2017 10;54:81-90.
    PMID: 28642159 DOI: 10.1016/j.meegid.2017.06.020
    BACKGROUND: Rat cytomegalovirus ALL-03 (Malaysian strain) which was isolated from a placenta and uterus of a house rat, Rattus rattus diardii has the ability to cross the placenta and infecting the fetus. To further elucidate the pathogenesis of the Malaysian strain of Rat Cytomegalovirus ALL-03 (RCMV ALL-03), detailed analysis on the viral genome sequence is crucial.

    METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome.

    RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome.

    CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.

    Matched MeSH terms: Open Reading Frames/genetics*
  13. Matsumoto T, Sato M, Nishizono A, Ahmed K
    Arch Virol, 2019 Aug;164(8):2179-2182.
    PMID: 31111258 DOI: 10.1007/s00705-019-04286-x
    We identified two novel circoviruses, HK02976 and HK00220, in oral swabs from bats. The size of their full genome was 2,010 nucleotides (nt). The full-genome sequence of our strains shared 96.1% nucleotide sequence identity with each other, and 39.9%-69.5% identity with bat-associated circoviruses (BatACVs)1-9. Based on the species demarcation threshold for viruses of the family Circoviridae, which is 80% genome-wide nucleotide sequence identity, we have tentatively named this group of viruses "bat-associated circovirus 10" (BatACV10).
    Matched MeSH terms: Open Reading Frames/genetics
  14. Mat-Sharani S, Firdaus-Raih M
    BMC Bioinformatics, 2019 Feb 04;19(Suppl 13):551.
    PMID: 30717662 DOI: 10.1186/s12859-018-2550-2
    BACKGROUND: Small open reading frames (smORF/sORFs) that encode short protein sequences are often overlooked during the standard gene prediction process thus leading to many sORFs being left undiscovered and/or misannotated. For many genomes, a second round of sORF targeted gene prediction can complement the existing annotation. In this study, we specifically targeted the identification of ORFs encoding for 80 amino acid residues or less from 31 fungal genomes. We then compared the predicted sORFs and analysed those that are highly conserved among the genomes.

    RESULTS: A first set of sORFs was identified from existing annotations that fitted the maximum of 80 residues criterion. A second set was predicted using parameters that specifically searched for ORF candidates of 80 codons or less in the exonic, intronic and intergenic sequences of the subject genomes. A total of 1986 conserved sORFs were predicted and characterized.

    CONCLUSIONS: It is evident that numerous open reading frames that could potentially encode for polypeptides consisting of 80 amino acid residues or less are overlooked during standard gene prediction and annotation. From our results, additional targeted reannotation of genomes is clearly able to complement standard genome annotation to identify sORFs. Due to the lack of, and limitations with experimental validation, we propose that a simple conservation analysis can provide an acceptable means of ensuring that the predicted sORFs are sufficiently clear of gene prediction artefacts.

    Matched MeSH terms: Open Reading Frames/genetics*
  15. Gan HM, Tan MH, Gan HY, Lee YP, Austin CM
    PMID: 25648918 DOI: 10.3109/19401736.2015.1007325
    The clawed lobster Nephrops norvegicus is an important commercial species in European waters. We have sequenced the complete mitochondrial genome of the species from a partial genome scan using Next-Gen sequencing. The N. norvegicus has a mitogenome of 16,132 base pairs (71.22% A+ T content) comprising 13 protein-coding genes, 2 ribosomal subunit genes, 21 transfer RNAs, and a putative 1259 bp non-coding AT-rich region. This mitogenome is the second fully characterized for the family Nephropidae and the first for the genus Nephrops. The mitogenome gene order is identical to the Maine lobster, Homarus americanus with the exception of the possible loss of the trnI gene.
    Matched MeSH terms: Open Reading Frames
  16. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693708 DOI: 10.3109/19401736.2015.1007311
    The mitochondrial genome of the rock pool prawn (Palaemon serenus), is sequenced, making it the third for genera of the family Palaemonidae and the first for the genus Palaemon. The mitogenome is 15,967 base pairs in length and comprises 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The P. serenus mitogenome has an AT bias of 58.97% and a base composition of 29.79% for T, 24.14% for C, 29.18% for A, and 16.89% for G. The mitogenome gene order of P. serenus is identical to Exopalaemon carinicauda.
    Matched MeSH terms: Open Reading Frames
  17. Gan HY, Gan HM, Lee YP, Austin CM
    PMID: 25693707 DOI: 10.3109/19401736.2015.1007312
    The mitochondrial genome sequence of the Australian freshwater shrimp, Paratya australiensis, is presented, which is the fourth for genera of the superfamily Atyoidea and the first atyid from the southern hemisphere. The base composition of the P. australiensis, mitogenome is 33.55% for T, 18.24% for C, 35.16% for A, and 13.06% for G, with an AT bias of 71.58%. It has a mitogenome of 15,990 base pairs comprised of 13 protein-coding, 2 ribosomal subunit and 22 transfer RNAs genes and a non-coding AT-rich region. The mitogenome gene order for the species is typical for atyid shrimps, which conform to the primitive pan crustacean model.
    Matched MeSH terms: Open Reading Frames
  18. Austin CM, Tan MH, Lee YP, Croft LJ, Meekan MG, Gan HM
    PMID: 25103432 DOI: 10.3109/19401736.2014.947586
    The complete mitogenome of the ray Pastinachus atrus was recovered from a partial genome scan using the HiSeq sequencing system. The P. atrus mitogenome has 18,162 base pairs (61% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 2516 bp non-coding AT-rich region. This mitogenome sequence is the first for a ray from Australian waters, the first for the Genus Pastinachus, and the 6th for the family Dasyatidae.
    Matched MeSH terms: Open Reading Frames
  19. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, et al.
    Bioinform Biol Insights, 2014 Jan 8;8:1-16.
    PMID: 24453480 DOI: 10.4137/BBI.S13076
    A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
    Matched MeSH terms: Open Reading Frames
  20. Naqvi KF, Patin D, Wheatley MS, Savka MA, Dobson RC, Gan HM, et al.
    Front Microbiol, 2016;7:362.
    PMID: 27047475 DOI: 10.3389/fmicb.2016.00362
    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/C Vs ) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44-46°C. Its apparent K m values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum.
    Matched MeSH terms: Open Reading Frames
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links