PATIENTS AND METHODS: In a pilot experimental study, six patients (10 hips) with early-stage non-traumatic ONFH were treated by core decompression, and concurrent injection of local DFO loaded on PLGA scaffold into the subchondral femoral head. Outcome measures were evaluated before the surgery and 12 and 24 months after the surgery and included visual analog scale (VAS) for pain, modified Merle d'Aubigné-Postel (MAP) score for hip function by MRI, and rate of osteonecrosis assessed by the modified.
RESULTS: The mean MPA score was 14.7 ± 1.16 before the surgery and 16.7 ± 1.41 one year after the surgery (P = 0.004). The mean VAS for pain was 4.7 ± 1.25 before the surgery and 1.8 ± 1.03 one year after the surgery (P = 0.005). The mean Kerboul angle was 219 ± 58.64 before the operation and 164.6 ± 41.82 one year after the operation (P
METHODS: Thermomechanical damage-maximum bone temperature, osteonecrosis diameter, osteonecrosis depth, maximum thrust force, and torque-were calculated using the finite element method under various margin heights (0.05-0.25 mm) and widths (0.02-0.26 mm). The simulation results were validated with experimental tests and previous research data.
RESULTS: The effect of margin height in increasing the maximum bone temperature, osteonecrosis diameter, and depth were at least 19.1%, 41.9%, and 59.6%, respectively. The thrust force and torque are highly sensitive to margin height. A higher margin height (0.21-0.25 mm) reduced the thrust force by 54.0% but increased drilling torque by 142.2%. The bone temperature, osteonecrosis diameter, and depth were 16.5%, 56.5%, and 81.4% lower, respectively, with increasing margin width. The minimum thrust force (11.1 N) and torque (41.9 Nmm) were produced with the highest margin width (0.26 mm). The margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 produced the highest sum of weightage.
CONCLUSIONS: A surgical drill bit with a margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 mm can produce minimum thermomechanical damage in cortical bone drilling. The insights regarding the suitable ranges for margin height and width from this study could be adopted in future research devoted to optimizing the margin of the existing surgical drill bit.
CASE REPORT: We present a case report on management of an electrosurgery induced osteonecrosis involving maxillary alveolus of left premolars.
DISCUSSION: Inadvertent contact of the electrosurgery tip on bone can result in necrosis making it necessary to remove the sequestrum and graft the defect. Platelet rich fibrin in combination with bone grafts have been well documented to provide successful periodontal regeneration.
CLINICAL IMPLICATIONS: Our aim of presenting this report is to create awareness among the health care providers regarding electrosurgical injuries. To our knowledge, this is the first time platelet rich fibrin has been used in the management of intraoral electrosurgical injury. Combining bone grafts with platelet rich fibrin is a good alternative as it can be done with relative ease and predictable outcome.