METHODS: PCR was conducted on genomic DNA of patients and control to look for Alpha-2-MRAP insertion/deletion polymorphism. Besides that, serum level of Alpha-2-MRAP, oxidative stress marker myeloperoxidase, Malondialdehyde (MDA), Advanced oxidation protein products (AOPP), and uric acid were determined.
RESULTS: The D and I allele frequencies were 57.50% and 42.50% in patients, 77.50% and 22.50% in control, individually. The result showed that II genotype was associated with nephrolithiasis patients group. A significant decrease was observed in serum Alpha-2-MRAP,myeloperoxidase and TAS,while TOS,OSI,MDA,AOPP and uric acid were substantially increased in II and ID when compared to DD genotype in patients with nephrolithiasis.
CONCLUSION: Our results demonstrate for the first time that patients with II genotype had an increased risk of stones. Also, the results demonstrate that I allele of the 5 insertion/deletion polymorphism in the Alpha-2-MRAP gene is related with an increase of oxidative stress in nephrolithiasis patients and may possibly impose a risk for cardiovascular diseases in patients with II genotype of Alpha-2-MRAP.
METHODS: Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS
METHODS: Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis.
RESULTS: PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes.
CONCLUSIONS: PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process.
RESULTS: In the present study, in silico prediction of MAR/SAR was performed in the ABL gene. More than 80% of the predicted MAR/SAR sites are closely associated with previously reported patient breakpoint cluster regions (BCR). By using inverse polymerase chain reaction (IPCR), we demonstrated that hydrogen peroxide (H2O2)-induced apoptosis in normal nasopharyngeal epithelial and NPC cells led to chromosomal breakages within the ABL BCR that contains a MAR/SAR. Intriguingly, we detected two translocations in H2O2-treated cells. Region of microhomology was found at the translocation junctions. This observation is consistent with the operation of microhomology-mediated NHEJ.
CONCLUSIONS: Our findings suggested that oxidative stress-induced apoptosis may participate in chromosome rearrangements of NPC. A revised model for oxidative stress-induced apoptosis mediating chromosome rearrangement in NPC is proposed.