Displaying publications 1 - 20 of 48 in total

  1. Tan BL, Norhaizan ME, Liew WP
    Oxid Med Cell Longev, 2018;2018:9719584.
    PMID: 29643982 DOI: 10.1155/2018/9719584
    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.
    Matched MeSH terms: Oxidative Stress/physiology*
  2. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
    Matched MeSH terms: Oxidative Stress/physiology*
  3. Prakash A, Dhaliwal GK, Kumar P, Majeed AB
    Int J Neurosci, 2017 Feb;127(2):99-108.
    PMID: 27044501
    Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. A complicated array of molecular events has been implicated in the pathogenesis of AD. It is attributed to a variety of pathological conditions that share similar critical processes, such as oxidative stress, proteinaceous aggregations, mitochondrial dysfunctions and energy failure. There is increasing evidence suggesting that metal homeostasis is dysregulated in the pathology of AD. Biometals play an important role in the normal body functioning but AD may be mediated or triggered by disproportion of metal ions leading to changes in critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. The link is multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper (Cu) and other trace metals. Their levels in the brain are found to be elevated in AD. In other neurodegenerative disorders, Cu, zinc, aluminum and manganese are involved. This paper is a review of recent advances of the role of metals in the pathogenesis and pathophysiology of AD and related neurodegenerative diseases.
    Matched MeSH terms: Oxidative Stress/physiology
  4. Leong XF, Ng CY, Badiah B, Das S
    ScientificWorldJournal, 2014;2014:768237.
    PMID: 24526921 DOI: 10.1155/2014/768237
    This review is to examine the current literatures on the relationship between periodontitis and hypertension as well as to explore the possible biological pathways underlying the linkage between these health conditions. Hypertension is one of the major risk factors for cardiovascular diseases. Oxidative stress and endothelial dysfunction are among the critical components in the development of hypertension. Inflammation has received much attention recently and may contribute to a pivotal role in hypertension. Periodontitis, a chronic low-grade inflammation of gingival tissue, has been linked to endothelial dysfunction, with blood pressure elevation and increased mortality risk in hypertensive patients. Inflammatory biomarkers are increased in hypertensive patients with periodontitis. Over the years, various researches have been performed to evaluate the involvement of periodontitis in the initiation and progression of hypertension. Many cross-sectional studies documented an association between hypertension and periodontitis. However, more well-designed prospective population trials need to be carried out to ascertain the role of periodontitis in hypertension.
    Matched MeSH terms: Oxidative Stress/physiology*
  5. Swamy M, Salleh MJ, Sirajudeen KN, Yusof WR, Chandran G
    Int J Med Sci, 2010 May 31;7(3):147-54.
    PMID: 20567615
    Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusion (reoxygenation), the nitric oxide synthase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase and arginase activities along with the concentration of nitrate /nitrite, thiobarbituric acid reactive substances and total antioxidant status were estimated in cerebral cortex, cerebellum and brain stem of rats subjected to anoxia and reperfusion. The results of this study clearly demonstrated the increased production of nitric oxide by increased activity of nitric oxide synthase. The increased activities of argininosuccinate synthetase and argininosuccinate lyase suggest the increased and effective recycling of citrulline to arginine in anoxia, making nitric oxide production more effective and contributing to its toxic effects. The decreased activity of glutamine synthetase may favor the prolonged availability of glutamic acid causing excitotoxicity leading to neuronal damage in anoxia. The increased formation of thiobarbituric acid reactive substances and decreased total antioxidant status indicate the presence of oxidative stress in anoxia and reperfusion. The increased arginase and sustained decrease of GS activity in reperfusion group likely to be protective.
    Matched MeSH terms: Oxidative Stress/physiology*
  6. Puthucheary SD, Nathan SA
    Singapore Med J, 2008 Feb;49(2):117-20.
    PMID: 18301838
    Oxidative stress can occur in sepsis and infection, when overproduction of free radicals is not countered by the host antioxidant system, leading to impairment of host cellular functions. Various disease states are accompanied by the accumulation of 15-F2t-IsoP in biological fluids. These isoprostanes are considered as markers of oxidative stress, and inflammation and inflammatory mediators.
    Matched MeSH terms: Oxidative Stress/physiology
  7. Bhat S, Rao G, Murthy KD, Bhat PG
    Indian J. Exp. Biol., 2007 May;45(5):455-8.
    PMID: 17569288
    The present study was aimed to find out whether a change in the alignment of the pyramid from the north-south axis causes any variation in the effects produced by it on plasma cortisol levels and markers of oxidative stress in erythrocytes of adult-female Wistar rats. Plasma cortisol and erythrocyte TBARS levels were significantly lower whereas erythrocyte GSH was significantly higher in rats kept in pyramid that was aligned on the four cardinal points--north, east, south and west, as compared to normal control rats. Although there was a significant difference in the plasma cortisol level between normal control group and the group of rats kept in randomly aligned pyramid, there was no significant difference between these two groups for the other parameters. Erythrocyte TBARS levels in the group of rats kept in the randomly aligned pyramid was significantly higher than that in the group kept in the magnetically aligned pyramid. The results suggest that the north-south alignment of the pyramid is crucial for its expected effects.
    Matched MeSH terms: Oxidative Stress/physiology
  8. Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y, Ali F
    Inflammopharmacology, 2016 Feb;24(1):1-10.
    PMID: 26750181 DOI: 10.1007/s10787-015-0255-y
    Atherosclerotic cardiovascular disease (CVD) is a collective term comprising of a group of disorders of the heart and blood vessels. These diseases are the largest cause of morbidity and premature death worldwide. Coronary heart disease and cerebrovascular disease (stroke) are the most frequently occurring diseases. The two major initiators involved in the development of atherosclerotic CVD are vascular production of reactive oxygen species (ROS) and lipid oxidation. In atherosclerosis development, ROS is associated with rapid loss of anti-inflammatory and anti-atherogenic activities of the endothelium-derived nitric oxide (NO(·)) resulting in endothelial dysfunction. In part involving activation of the transcription factor NF-κB, ROS have been involved in signaling cascades leading to vascular pro-inflammatory and pro-thrombotic gene expression. ROS is also a potent activator of matrix metalloproteinases (MMPs), which indicate plaque destabilization and rupture. The second initiator involved in atherosclerotic CVD is the oxidation of low-density lipoproteins (LDL). Oxidation of LDL in vessel wall leads to an inflammatory cascade that activates atherogenic pathway leading to foam cell formation. The accumulation of foam cells leads to fatty streak formation, which is the earliest visible atherosclerotic lesion. In contrast, the cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and hepatic apolipoprotein E (apoE) expression can improve cardiovascular function. SERCA2a regulates the cardiac contractile function by lowering cytoplasmic calcium levels during relaxation, and affecting NO(·) action in vascular cells, while apoE is a critical ligand in the plasma clearance of triglyceride- and cholesterol-rich lipoproteins.
    Matched MeSH terms: Oxidative Stress/physiology
  9. Muid S, Abu Bakar NA, Abdul Rahman T, Tengku Ismail TS, Kholin SF, Suvorov AV, et al.
    Malays J Pathol, 2019 Dec;41(3):283-292.
    PMID: 31901913
    INTRODUCTION: Apart from inflammation and endothelial dysfunction, other key components in the development of atherogenesis include prothrombogenesis and oxidative stress. The effects of long-term confinement and isolation, exposure to radiation and different gravity forces during space travel could potentially increase the long-term risk of atherosclerosis. To the best of our knowledge, this is the first study determining the status of prothrombogenesis and oxidative stress in six cosmonauts subjected to the longest duration of confined isolation period of 520 days in preparation for prospective undetermined manned space travel to Mars.

    MATERIALS AND METHODS: This collaborative research between the National Space Agency (ANGKASA), Universiti Teknologi MARA, Malaysia and Institute of Biomedical Problems (IBMP), Russia was conducted at the Russian Academy of Sciences IBMP, Moscow, Russia. Six multi-national cosmonauts were assigned to live in a ground-based confined module for 520 days. Standard exercise and diet regime were instituted throughout the isolation phase. Six age, ethnic and gender-matched healthy, free-living ground controls were recruited in parallel. Serial serum and whole blood were analysed for biomarkers of prothrombogenesis [plasminogen activator inhibitor-1 (PAI-1) and homocysteine] and oxidative stress [oxidised low-density lipoprotein (ox-LDL) and malondialdehyde (MDA)].

    RESULTS: There were significantly lower concentrations of PAI-1 and homocysteine in cosmonauts during confinement compared to the controls. There were no significant differences seen in the concentrations of biomarkers of oxidative stress during confinement but there was a significant percentage change increment for serum MDA in cosmonauts.

    CONCLUSION: Long-term confinement decreased the risk of prothrombogenesis and this could be attributed to the exercise and diet regime which includes omega-3 fatty acids supplementation given to the crew members during their confinement period. However, oxidative damage could not be excluded and may be attributed to the influence of psychological stress during this prolonged confinement.

    Matched MeSH terms: Oxidative Stress/physiology*
  10. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al.
    Antioxid Redox Signal, 2020 03 10;32(8):504-521.
    PMID: 31691576 DOI: 10.1089/ars.2019.7828
    To understand the molecular pathways involved in oxidative stress (OS)-mediated sperm dysfunction against a hypoxic and hyperthermic microenvironment backdrop of varicocele through a proteomic approach.
    Protein selection (261) based on their role in redox homeostasis and/or oxidative/hyperthermic/hypoxic stress response from the sperm proteome data set of unilateral varicocele (UV) in comparison with fertile control displayed 85 to be differentially expressed. Upregulation of cellular oxidant detoxification and glutathione and reduced nicotinamide adenine dinucleotide (NADH) metabolism accompanied with downregulation of protein folding, energy metabolism, and heat stress responses were observed in the UV group. Ingenuity pathway analysis (IPA) predicted suppression of oxidative phosphorylation (OXPHOS) (validated by Western blotting [WB]) along with augmentation in OS and mitochondrial dysfunction in UV. The top affected networks indicated by IPA involved heat shock proteins (HSPs: HSPA2 and HSP90B1). Their expression profile was corroborated by immunocytochemistry and WB. Hypoxia-inducible factor 1A as an upstream regulator of HSPs was predicted by MetaCore. Occurrence of reductive stress in UV spermatozoa was corroborated by thiol redox status.
    This is the first evidence of a novel pathway showing aberrant redox homeostasis against chronic hypoxic insult in varicocele leading to sperm dysfunction.
    Upregulation of antioxidant system and dysfunctional OXPHOS would have shifted the redox balance of biological redox couples (GSH/GSSG, NAD+/NADH, and NADP+/NADPH) to a more reducing state leading to reductive stress. Chronic reductive stress-induced OS may be involved in sperm dysfunction in infertile men with UV, where the role of HSPs cannot be ignored. Intervention with antioxidant therapy warrants proper prior investigation.
    Matched MeSH terms: Oxidative Stress/physiology
  11. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Oxidative Stress/physiology*
  12. Shafin N, Zakaria R, Hussain NH, Othman Z
    Menopause, 2013 Jun;20(6):661-6.
    PMID: 23715378 DOI: 10.1097/GME.0b013e31827758c6
    The aim of this study was to examine the association between changes in blood oxidative stress level/activity and changes in memory performance among postmenopausal women.
    Matched MeSH terms: Oxidative Stress/physiology*
  13. Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh S, Gurtu S
    Oxid Med Cell Longev, 2012;2012:374037.
    PMID: 22315654 DOI: 10.1155/2012/374037
    Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.
    Matched MeSH terms: Oxidative Stress/physiology
  14. Hafizah AH, Zaiton Z, Zulkhairi A, Mohd Ilham A, Nor Anita MM, Zaleha AM
    J Zhejiang Univ Sci B, 2010 May;11(5):357-65.
    PMID: 20443214 DOI: 10.1631/jzus.B0900397
    Endothelial cell death due to increased reactive oxygen species (ROS) may contribute to the initial endothelial injury, which promotes atherosclerotic lesion formation. Piper sarmentosum (PS), a natural product, has been shown to have an antioxidant property, which is hypothesized to inhibit production of ROS and prevent cell injury. Thus, the present study was designed to determine the effects of PS on the hydrogen peroxide (H(2)O(2))-induced oxidative cell damage in cultured human umbilical vein endothelial cells (HUVECs). In this experiment, HUVECs were obtained by collagenase perfusion of the large vein in the umbilical cord and cultured in medium M200 supplemented with low serum growth supplementation (LSGS). HUVECs were treated with various concentrations of H(2)O(2) (0-1000 micromol/L) and it was observed that 180 micromol/L H(2)O(2) reduced cell viability by 50% as denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Using the above concentration as the positive control, the H(2)O(2)-induced HUVECs were concomitantly treated with various concentrations (100, 150, 250 and 300 microg/ml) of three different extracts (aqueous, methanol and hexane) of PS. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) levels showed a significant increase (P<0.05) in HUVECs compared to the negative control. However, PS extracts showed a protective effect on HUVECs from H(2)O(2)-induced cell apoptosis with a significant reduction in MDA, SOD, CAT and GPX levels (P<0.05). Furthermore, PS had exhibited ferric reducing antioxidant power with its high phenolic content. Hence, it was concluded that PS plays a beneficial role in reducing oxidative stress in H(2)O(2)-induced HUVECs.
    Matched MeSH terms: Oxidative Stress/physiology*
  15. Jinam TA, Phipps ME, Indran M, Kuppusamy UR, Mahmood AA, Hong LC, et al.
    Ethn Health, 2008 Jun;13(3):277-87.
    PMID: 18568977 DOI: 10.1080/13557850801930478
    Health scenarios are constantly evolving, particularly in developing countries but little is known regarding the health status of indigenous groups in Malaysia. This study aims to elucidate the current health status in four indigenous populations in the country, who by and large been left out of mainstream healthcare developments.
    Matched MeSH terms: Oxidative Stress/physiology
  16. Kuppusamy UR, Indran M, Ahmad T, Wong SW, Tan SY, Mahmood AA
    Clin. Chim. Acta, 2005 Jan;351(1-2):197-201.
    PMID: 15563890 DOI: 10.1016/j.cccn.2004.09.014
    BACKGROUND: Comparisons of oxidative indices and total antioxidant status between end-stage renal disease (ESRD) patients with or without diabetes is scant, especially in the Asian population.
    METHOD: The assays were carried out according to known established protocols.
    RESULT: The present study showed that ESRD patients with or without non-insulin-dependent diabetes mellitus (NIDDM) did not have any significant differences in antioxidant enzyme activities, advanced glycated end products (AGE), advanced oxidized protein products (AOPP) and ferric reducing ability of plasma (FRAP), indicating that hyperglycemia does not exacerbate oxidative damage in ESRD. The regulation of catalase and glutathione peroxidase is also altered in ESRD. Elevated FRAP was observed in both ESRD groups (with and without NIDDM). The dialysis process did not alter the antioxidant enzyme activities but decreased AGEs and FRAP and increased AOPP levels.
    CONCLUSION: Oxidative stress is present in ESRD but this is not significantly exacerbated by hyperglycemia. The contribution of components in the pathology of renal failure towards oxidative stress exceeds that of hyperglycemia.
    Matched MeSH terms: Oxidative Stress/physiology*
  17. Guarini G, Kiyooka T, Ohanyan V, Pung YF, Marzilli M, Chen YR, et al.
    Basic Res. Cardiol., 2016 May;111(3):29.
    PMID: 27040114 DOI: 10.1007/s00395-016-0547-4
    Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process.
    Matched MeSH terms: Oxidative Stress/physiology
  18. Murugaiyah V, Mattson MP
    Neurochem Int, 2015 Oct;89:271-80.
    PMID: 25861940 DOI: 10.1016/j.neuint.2015.03.009
    The impact of dietary factors on brain health and vulnerability to disease is increasingly appreciated. The results of epidemiological studies, and intervention trials in animal models suggest that diets rich in phytochemicals can enhance neuroplasticity and resistance to neurodegeneration. Here we describe how interactions of plants and animals during their co-evolution, and resulting reciprocal adaptations, have shaped the remarkable characteristics of phytochemicals and their effects on the physiology of animal cells in general, and neurons in particular. Survival advantages were conferred upon plants capable of producing noxious bitter-tasting chemicals, and on animals able to tolerate the phytochemicals and consume the plants as an energy source. The remarkably diverse array of phytochemicals present in modern fruits, vegetables spices, tea and coffee may have arisen, in part, from the acquisition of adaptive cellular stress responses and detoxification enzymes in animals that enabled them to consume plants containing potentially toxic chemicals. Interestingly, some of the same adaptive stress response mechanisms that protect neurons against noxious phytochemicals are also activated by dietary energy restriction and vigorous physical exertion, two environmental challenges that shaped brain evolution. In this perspective article, we describe some of the signaling pathways relevant to cellular energy metabolism that are modulated by 'neurohormetic phytochemicals' (potentially toxic chemicals produced by plants that have beneficial effects on animals when consumed in moderate amounts). We highlight the cellular bioenergetics-related sirtuin, adenosine monophosphate activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 (IGF-1) pathways. The inclusion of dietary neurohormetic phytochemicals in an overall program for brain health that also includes exercise and energy restriction may find applications in the prevention and treatment of a range of neurological disorders.
    Matched MeSH terms: Oxidative Stress/physiology
  19. Aziz J, Shezali H, Radzi Z, Yahya NA, Abu Kassim NH, Czernuszka J, et al.
    Skin Pharmacol Physiol, 2016;29(4):190-203.
    PMID: 27434176 DOI: 10.1159/000447017
    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks.
    Matched MeSH terms: Oxidative Stress/physiology*
  20. Khalilpour S, Latifi S, Behnammanesh G, Majid AM, Majid AS, Tamayol A
    J Neurol Sci, 2017 Apr 15;375:430-441.
    PMID: 28320183 DOI: 10.1016/j.jns.2016.12.044
    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.
    Matched MeSH terms: Oxidative Stress/physiology
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links