Displaying all 13 publications

Abstract:
Sort:
  1. Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752125 DOI: 10.3390/molecules25153521
    In the present study, 2-bromo-4-chlorophenyl-2-bromobutanoate (3) was synthesized via the reaction of 2-bromo-4-chlorophenol with 2-bromobutanoyl bromide in the presence of pyridine. A variety of 2-bromo-4-chlorophenyl-2-bromobutanoate derivatives (5a-f) were synthesized with moderate to good yields via a Pd-catalyzed Suzuki cross-coupling reaction. To find out the reactivity and electronic properties of the compounds, Frontier molecular orbital analysis, non-linear optical properties, and molecular electrostatic potential studies were performed.
    Matched MeSH terms: Palladium/chemistry*
  2. Tan AS, Singh J, Rezali NS, Muhamad M, Nik Mohamed Kamal NNS, Six Y, et al.
    Molecules, 2022 Aug 23;27(17).
    PMID: 36080141 DOI: 10.3390/molecules27175373
    The Heck cross-coupling reaction is a well-established chemical tool for the synthesis of unsaturated compounds by formation of a new C-C bond. In this study, 1,3-diarylpropene derivatives, designed as structural analogues of stilbenoids and dihydrostilbenoids, were synthesised by the palladium-catalysed reactions of 2-amidoiodobenzene derivatives with either estragole or eugenol. The products were obtained with high (E) stereoselectivity but as two regioisomers. The ratios of isomers were found to be dependent on the nature of the allylbenzene partner and were rationalised by electronic effects exercising a determining influence in the β-hydride elimination step. In addition, the cytotoxic effects of all the Heck reaction products were evaluated against MCF-7 and MDA-MB-231 human breast cancer cells, with unpromising results. Among all, compound 7d exhibited weak cytotoxic activity towards MCF-7 cell lines with IC50 values of 47.92 µM in comparison with tamoxifen and was considered to have general toxicity (SI value < 2).
    Matched MeSH terms: Palladium/chemistry
  3. Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SCB, Chen Y
    PLoS One, 2018;13(2):e0193281.
    PMID: 29466453 DOI: 10.1371/journal.pone.0193281
    We present a biogenic method for the synthesis of palladium nanoparticle (PdNP)-modified by reducing graphene oxide sheets (rGO) in a one-pot strategy using Ficus carica fruit juice as the reducing agent. The synthesized material was well characterized by morphological and structural analyses, including, Ultraviolet-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM) and Raman spectroscopy. The results revealed that the PdNP modified GO are spherical in shape and estimated to be a dimension of ~0.16 nm. The PdNP/graphene exhibits a great catalytic activity in Suzuki cross-coupling reactions for the synthesis of biaryl compounds with various substrates under both aqueous and aerobic conditions. The catalyst can be recovered easily and is suitable for repeated use because it retains its original catalytic activity. The PdNP/rGO catalyst synthesized by an eco-friendly protocol was used for the Suzuki coupling reactions. The method offers a mild and effective substitute to the existing methods and may significantly contribute to green chemistry.
    Matched MeSH terms: Palladium/chemistry*
  4. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM
    ScientificWorldJournal, 2014;2014:796196.
    PMID: 25054185 DOI: 10.1155/2014/796196
    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.
    Matched MeSH terms: Palladium/chemistry*
  5. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Palladium/chemistry*
  6. Kee CH, Ariffin A, Awang K, Takeya K, Morita H, Hussain SI, et al.
    Org Biomol Chem, 2010 Dec 21;8(24):5646-60.
    PMID: 20941451 DOI: 10.1039/c0ob00296h
    The syntheses of fourteen unusual o-carboxamido stilbenes by the Heck protocol revealed surprising complexity related to intriguing substituent effects with mechanistic implications. The unexpected cytotoxic and chemopreventive properties also seem to be substituent dependent. For example, although stilbene 15d (with a 4-methoxy substituent) showed cytotoxicity on HT29 colon cancer cells with an IC(50) of 4.9 μM, the 3,4-dimethoxy derivative (15c) is inactive. It is interesting to observe that the 3,5-dimethoxy derivative (15e) showed remarkable chemopreventive activity in WRL-68 fetal hepatocytes, surpassing the gold standard, resveratrol. The resveratrol concentration needed to be 5 times higher than that of 15e to produce comparable elevation of NQO1.
    Matched MeSH terms: Palladium/chemistry
  7. Ahmad G, Rasool N, Rizwan K, Altaf AA, Rashid U, Mahmood T, et al.
    Molecules, 2019 Jul 17;24(14).
    PMID: 31319634 DOI: 10.3390/molecules24142609
    In the present study, 4-methylpyridin-2-amine was reacted with 3-bromothiophene-2-carbaldehyde and the Schiff base (E)-1-(3-bromothiophen-2-yl)-N-(4-methylpyridin-2-yl)methanimine was obtained in a 79% yield. Coupling of the Schiff base with aryl/het-aryl boronic acids under Suzuki coupling reaction conditions, using Pd(PPh3)4 as catalyst, yielded products with the hydrolysis of the imine linkages (5a-5k, 6a-6h) in good to moderate yields. To gain mechanistic insight into the transition metal-catalyzed hydrolysis of the compounds, density functional theory (DFT) calculations were performed. The theoretical calculations strongly supported the experiment and provided an insight into the transition metal-catalyzed hydrolysis of imines.
    Matched MeSH terms: Palladium/chemistry
  8. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Palladium/chemistry*
  9. Ikram HM, Rasool N, Ahmad G, Chotana GA, Musharraf SG, Zubair M, et al.
    Molecules, 2015 Mar 23;20(3):5202-14.
    PMID: 25806546 DOI: 10.3390/molecules20035202
    The present study reports the synthesis of various new derivatives based on 5-aryl-2-bromo-3-hexylthiophene with moderate-to-good yields via a palladium-catalyzed Suzuki cross-coupling reaction. This coupling method involved the reaction of 2,5-dibromo-3-hexylthiophene with several arylboronic acids in order to synthesize corresponding thiophene derivatives under controlled and optimal reaction conditions. The different substituents (CH3, OCH3, Cl, F etc.) present on arylboronic acids are found to have significant electronic effects on the overall properties of new products. The synthesized thiophene molecules were studied for their haemolytic, biofilm inhibition and anti-thrombolytic activities, and almost all products showed potentially good properties. The compound 2-bromo-5-(3-chloro-4-fluorophenyl)-3-hexylthiophenein particular exhibited the highest values for haemolytic and bio-film inhibition activities among all newly synthesized derivatives. In addition, the compound 2-bromo-3-hexyl-5-(4-iodophenyl)thiophene also showed high anti-thrombolytic activity, suggesting the potential medicinal applications of these newly synthesized compounds.
    Matched MeSH terms: Palladium/chemistry
  10. Ahmad N, Anouar EH, Tajuddin AM, Ramasamy K, Yamin BM, Bahron H
    PLoS One, 2020;15(4):e0231147.
    PMID: 32287324 DOI: 10.1371/journal.pone.0231147
    This paper reports the synthesis, characterization, anticancer screening and quantum chemical calculation of a tetradentate Schiff base 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis- (azanylylidene))bis(methanylylidene))bis(4-fluorophenol) (L2F) and its Pd (II) complex (PdL2F). The compounds were characterized via UV-Visible, NMR, IR spectroscopy and single crystal x-ray diffraction. Density Functional Theory (DFT) and time-dependent DFT calculations in gas and solvent phases were carried out using B3LYP, B3P86, CAM-B3LYP and PBE0 hybrid functionals combined with LanL2DZ basis set. Complexation of L2F to form PdL2F was observed to cause a bathochromic shift of the maximum absorption bands of n-π* from 327 to 410 nm; an upfield shift for δ (HC = N) from 8.30 to 7.96 ppm and a decreased wavenumber for ν(C = N) from 1637 to 1616 cm-1. Overall, the UV-Vis, NMR and IR spectral data are relatively well reproduced through DFT and TD-DFT methods. L2F and PdL2F showed IC50 of 90.00 and 4.10 μg/mL, respectively, against human colorectal carcinoma (HCT116) cell lines, signifying increased anticancer activity upon complexation with Pd (II).
    Matched MeSH terms: Palladium/chemistry
  11. Sivaranjan K, Padmaraj O, Santhanalakshmi J, Sathuvan M, Sathiyaseelan A, Sagadevan S
    Sci Rep, 2020 02 13;10(1):2586.
    PMID: 32054936 DOI: 10.1038/s41598-020-59491-5
    Exploring the new catalytic systems for the reduction of organic and inorganic pollutants from an indispensable process in chemical, petrochemical, pharmaceutical and food industries, etc. Hence, in the present work, authors motivated to synthesize bare reduced graphene oxide (rGO), polyaniline (PANI), three different ratios of rGO-PANI(80:20,50:50, 10:90) composites and rGO-PANI(80:20,50:50, 10:90) supported mono (Pd) & bimetallic [Pd: Au(1:1,1:2, 2:1)] nanocomposite by a facile chemical reduction method. Also, it investigated their catalytic performances for the reduction of organic/inorganic pollutants and antimicrobial activities. All the freshly prepared bare rGO, PANI, three different ratios of rGO-PANI(80:20, 50:50,10:90) composites and rGO-PANI(80:20, 50:50,10:90)/Pd & Pd: Au(1:1, 1:2,2:1) nanocomposite hybrid catalysts were characterized using UV-Vis, FT-IR, SEM, FE-SEM, EDAX, HR-TEM, XRD, XPS and Raman spectroscopy analysis. Among them, an optimized best composition of rGO-PANI(80:20)/Pd: Au(1:1) bimetallic nanocomposite hybrid catalyst exhibits better catalytic reduction and antimicrobial activities than other composites, as a result of strong electrostatic interactions between rGO, PANI and bimetal (Pd: Au) NPs through a synergistic effect. Hence, an optimized rGO-PANI(80:20)/Pd:Au(1:1) bimetallic nanocomposite catalyst would be considered as a suitable catalyst for the reduction of different nitroarenes, organic dyes, heavy metal ions and also significantly inhibit the growth of S. aureus, S. Typhi as well as Candida albicans and Candida kruesi in wastewater.
    Matched MeSH terms: Palladium/chemistry*
  12. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Palladium/chemistry*
  13. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Palladium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links