Displaying all 11 publications

Abstract:
Sort:
  1. Tan NH, Tan CS
    Anal Biochem, 1988 May 1;170(2):282-8.
    PMID: 3394929
    A convenient acidimetric assay for phospholipase A using egg yolk suspension as substrate has been developed. The substrate mixture consists of 1 part egg yolk, 1 part 8.1 mM sodium deoxycholate, and 1 part 18 mM calcium chloride. Phospholipase A activity is measured by following the initial rate of pH change, which is linear between pH 8.0 and 7.75 and is proportional to enzyme concentration over a wide range. The assay is highly reproducible, with a coefficient of variation of 3%, and as sensitive as most established assays for phospholipase A. The assay uses inexpensive and easily available substrate and is simple to perform. It is particularly useful for monitoring phospholipase A activity in chromatography fractions.
    Matched MeSH terms: Pancreas/enzymology
  2. Teng YS, Tan SG, Lopez CG, Ng T, Lie-Injo LE
    Hum Genet, 1978 Apr 24;41(3):347-54.
    PMID: 649160
    Malaysians of Malay, Chinese, and Indian ancestries were electrophoretically phenotyped for Amy1 and saliva esterase region 1 (Set-1) from saliva, Amy2 from plasma, soluble and mitochondrial GOT and PGM3 from leukocyte and placenta. Kadazans and Bajaus, the indigenous people of Sabah, East Malaysia were surveyed for Amy2. Three types of variants were observed for Amy1, one type for Amy2. Only Indians were found to be polymorphic for Amy1. Two GOTs 2-1 and three GOTm 2-1 variants were found among 281 Chinese while three GOTm 2-1 variants were found among 311 Malays. Malaysian Malays, Chinese, and Indians were found to be polymorphic for Set-1 and PGM3. The gene frequencies in Malays are Set-1F=0.601 +/- 0.021, Set-1S = 0.399 +/- 0.021; PGM13 = 0.788 +/- 0.020, PGM23 = 0.212 +/- 0.020; in Chinese Set-1F = 0.497 +/- 0.028, Set-1S = 0.503 +/- 0.028; PGM13 = 0.745 +/- 0.24, PGM23 = 0.255 +/- 0.024; in Indians, Set-1F = 0.449 +/- 0.031, Set-1S = 0.551 +/- 0.031; PGM13 = 0.755 +/- 0.029, PGM23 = 0.245 +/- 0.029.
    Matched MeSH terms: Pancreas/enzymology
  3. Zarinah KH, Abdullah F, Tan SG
    Ann Hum Biol, 1984 11 1;11(6):533-6.
    PMID: 6084457
    Three genetic markers, red-cell UMPK, PGP and serum AMY2 were investigated in Malaysians of Malay, Chinese and Indian ancestries using starch-gel and agarose-gel electrophoresis. UMPK was found to be polymorphic in all three races. Variants were observed for PGP in Malays; in Indians it is a polymorphic marker whereas it is monomorphic in Chinese. AMY2 was polymorphic only in Indians. The UMPK1 frequencies in Malays, Chinese and Indians, respectively, are 0.851, 0.880 and 0.942. The PGP1 frequencies are 0.991, 1.000, 0.962, and the AMY1(2) frequencies are 1.000, 1.000 and 0.983.
    Matched MeSH terms: Pancreas/enzymology
  4. Tan NH, Saifuddin MN, Yong WY
    Biochem. Int., 1991 Jan;23(1):175-81.
    PMID: 1863271
    The edema inducing activity of phospholipase A2 (PLA2) enzymes from snake venoms and porcine pancreas was investigated using mouse paw as experimental model. All ten PLA2 enzymes exhibited potent edema inducing activity. PLA2, however, is generally not the major edema inducing component of snake venom. Chemical modification studies indicated that enzymatic activity of PLA2 was required for its edema inducing activity. All PLA2 enzymes examined displayed a rapid onset edema which was suppressed by pretreatment of the mice with antihistamine. Dexamethasone pretreatment also inhibited edemas elicited by some PLA2 enzymes.
    Matched MeSH terms: Pancreas/enzymology
  5. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Pancreas/enzymology
  6. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Raza H, et al.
    Bioorg Chem, 2019 05;86:197-209.
    PMID: 30711702 DOI: 10.1016/j.bioorg.2019.01.040
    Keeping in mind the pharmacological importance of 2-aminothiazole and 1,2,4-triazole heterocyclic moieties, a series of novel ethylated bi-heterocyclic acetamide hybrids, 9a-p, was synthesized in a multi-step protocol. The structures of newly synthesized compounds were characterized by 1H NMR, 13C NMR, IR and EI-MS spectral studies. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against elastase and all these molecules were identified as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which revealed that, 9h, inhibited elastase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.9 µM. The computational study was articulate with the experimental results and these ligands unveiled good binding energy values (kcal/mol). So, these molecules can be considered as promising medicinal scaffolds for the treatment of skin melanoma, wrinkle formation, uneven pigmentation, and solar elastosis.
    Matched MeSH terms: Pancreas/enzymology
  7. Ado MA, Abas F, Mohammed AS, Ghazali HM
    Molecules, 2013;18(12):14651-69.
    PMID: 24287996 DOI: 10.3390/molecules181214651
    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.
    Matched MeSH terms: Pancreas/enzymology
  8. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
    Matched MeSH terms: Pancreas/enzymology
  9. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Ann Endocrinol (Paris), 2010 Sep;71(4):291-6.
    PMID: 20398890 DOI: 10.1016/j.ando.2010.03.003
    Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas.
    Matched MeSH terms: Pancreas/enzymology
  10. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S
    Int J Mol Sci, 2010 May 05;11(5):2056-66.
    PMID: 20559501 DOI: 10.3390/ijms11052056
    Hyperglycemia exerts toxic effects on the pancreatic beta-cells. This study investigated the hypothesis that the common antidiabetic drugs glibenclamide and metformin, in combination with tualang honey, offer additional protection for the pancreas of streptozotocin (STZ)-induced diabetic rats against oxidative stress and damage. Diabetes was induced in male Sprague Dawley rats by a single dose of STZ (60 mg/kg; ip). Diabetic rats had significantly elevated levels of lipid peroxidation (TBARS), up-regulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) while catalase (CAT) activity was significantly reduced. Glibenclamide and metformin produced no significant effects on TBARS and antioxidant enzymes except GPx in diabetic rats. In contrast, the combination of glibenclamide, metformin and honey significantly up-regulated CAT activity and down-regulated GPx activity while TBARS levels were significantly reduced. These findings suggest that tualang honey potentiates the effect of glibenclamide and metformin to protect diabetic rat pancreas against oxidative stress and damage.
    Matched MeSH terms: Pancreas/enzymology*
  11. Kumar S, Alagawadi KR
    Pharm Biol, 2013 May;51(5):607-13.
    PMID: 23363068 DOI: 10.3109/13880209.2012.757327
    Context: Alpinia galanga Willd (Zingiberaceae) (AG) is a rhizomatous herb widely cultivated in shady regions of Malaysia, India, Indochina and Indonesia. It is used in southern India as a domestic remedy for the treatment of rheumatoid arthritis, cough, asthma, obesity, diabetes, etc. It was reported to have anti-obesity, hypoglycemic, hypolipidemic and antioxidant properties.

    Objective: A flavonol glycoside, galangin, was isolated from AG rhizomes. Based on its in vitro pancreatic lipase inhibitory effect, the study was further aimed to clarify whether galangin prevented obesity induced in female rats by feeding cafeteria diet (CD) for 6 weeks.

    Materials and methods: The in vitro pancreatic lipase inhibitory effect of galangin was determined by measuring the release of oleic acid from triolein. For in vivo experiments, female albino rats were fed CD with or without 50 mg/kg galangin for 6 weeks. Body weight and food intake was measured at weekly intervals. On day 42, serum lipids levels were estimated and then the weight of liver and parametrial adipose tissue (PAT) was determined. The liver lipid peroxidation and triglyceride (TG) content was also estimated.

    Results: The IC50 value of galangin for pancreatic lipase was 48.20 mg/mL. Galangin produced inhibition of increased body weight, energy intake and PAT weight induced by CD. In addition, galangin produced a significant decrease in serum lipids, liver weight, lipid peroxidation and accumulation of hepatic TGs.

    Conclusion: Galangin present in AG rhizomes produces anti-obesity effects in CD-fed rats; this may be mediated through its pancreatic lipase inhibitory, hypolipidemic and antioxidant activities.
    Matched MeSH terms: Pancreas/enzymology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links