Displaying all 7 publications

Abstract:
Sort:
  1. Rothan HA, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al.
    Int J Med Sci, 2014;11(10):1029-38.
    PMID: 25136258 DOI: 10.7150/ijms.8895
    Platelet rich plasma clot- releasate (PRCR) shows significant influence on tissue regeneration in clinical trials. Although, the mechanism of PRCR effect on fibroblast differentiation has been studied on 2D culture system, a detailed investigation is needed to establish the role of PRCR in cell seeded in 3D scaffolds. Therefore, a study was conducted to evaluate the influence of PRCR in fibroblasts (DFB) differentiation and extracellular matrix formation on both 3D and 2D culture systems. Cell viability was measured using MTT assay and DFB differentiation was evaluated by determining the expression levels of nucleostamin and alpha smooth muscle actin (α-SMA), using indirect immunostaining and Western blotting. The expression levels of extracellular matrix genes (collagen-I, collagen-III, fibronectin and laminin) and focal adhesion formation gene (integrin beta-1) were measured using Real-time PCR. The PRCR at 10% showed significant effect on cells viability compared with 5% and 20% in both culture environments. The decrease in the expression levels of nucleostamin and the increase in α-SMA signify the DFB differentiation to myofibroblast-like cells that was prominently greater in 3D compared to 2D culture. In 3D culture systems, the total collage production, expression levels of the extracellular matrix gene and the focal adhesion gene were increased significantly compared to 2D culture. In conclusion, 3D culture environments enhances the proliferative and differentiation effects of PRCR on DFB, thereby potentially increases the efficacy of DFB for future tissue engineering clinical application.
    Matched MeSH terms: Platelet-Rich Plasma/metabolism*
  2. Atan R, Virzi GM, Peck L, Ramadas A, Brocca A, Eastwood G, et al.
    Blood Purif., 2014;37(4):296-303.
    PMID: 25096908 DOI: 10.1159/000363220
    To measure plasma pro-apoptotic and pro-necrotic activity in severe acute kidney injury (AKI) patients within a randomized controlled trial of continuous veno-venous hemofiltration with high cut-off filters (CVVH-HCO) versus standard filters (CVVH-Std).
    Matched MeSH terms: Plasma/metabolism
  3. Law JX, Chowdhury SR, Saim AB, Idrus RBH
    J Tissue Viability, 2017 Aug;26(3):208-215.
    PMID: 28615133 DOI: 10.1016/j.jtv.2017.05.003
    Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 104 cells/cm2) and fibroblasts (3 × 104 cells/cm2) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP.
    Matched MeSH terms: Platelet-Rich Plasma/metabolism
  4. Koh SM, Chan CK, Teo SH, Singh S, Merican A, Ng WM, et al.
    Knee, 2020 Jan;27(1):26-35.
    PMID: 31917106 DOI: 10.1016/j.knee.2019.10.028
    PURPOSE: Osteoarthritis (OA) of the knee is a multifactorial degenerative disease typically defined as the 'wear and tear' of articular joint cartilage. However, recent studies suggest that OA is a disease arising from chronic low-grade inflammation. We conducted a study to investigate the relationship between chronic inflammatory mediators present in both the systemic peripheral blood system and localised inflammation in synovial fluid (SF) of OA and non-OA knees; and subsequently made direct comparative analyses to understand the mechanisms that may underpin the processes involved in OA.

    METHODS: 20-Plex proteins were quantified using Human Magnetic Luminex® assay (R&D Systems, USA) from plasma and SF of OA (n = 14) and non-OA (n = 14) patients. Ingenuity Pathway Analysis (IPA) software was used to predict the relationship and possible interaction of molecules pertaining to OA.

    RESULTS: There were significant differences in plasma level for matrix metalloproteinase (MMP)-3, interleukin (IL)-27, IL-8, IL-4, tumour necrosis factor-alpha, MMP-1, IL-15, IL-21, IL-10, and IL-1 beta between the groups, as well as significant differences in SF level for IL-15, IL-8, vascular endothelial growth factor (VEGF), MMP-1, and IL-18. Our predictive OA model demonstrated that toll-like receptor (TLR) 2, macrophage migration inhibitory factor (MIF), TLR4 and IL-1 were the main regulators of IL-1B, IL-4, IL-8, IL-10, IL-15, IL-21, IL-27, MMP-1 and MMP-3 in the plasma system; whilst IL-1B, TLR4, IL-1, and basigin (BSG) were the regulators of IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, IL-27, MMP-1, and MMP-3 in the SF system.

    CONCLUSION: The elevated plasma IL-8 and SF IL-18 may be associated with the pathogenesis of OA via the activation of MMP-3.

    Matched MeSH terms: Plasma/metabolism*
  5. Mohd MA, Ahmad Norudin NA, Muhammad TST
    Mol Cell Endocrinol, 2020 04 05;505:110702.
    PMID: 31927097 DOI: 10.1016/j.mce.2020.110702
    Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.
    Matched MeSH terms: Retinol-Binding Proteins, Plasma/metabolism
  6. Adamu HA, Imam MU, Ooi DJ, Esa NM, Rosli R, Ismail M
    BMC Complement Altern Med, 2017 Jan 21;17(1):67.
    PMID: 28109299 DOI: 10.1186/s12906-017-1571-0
    The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings.
    Matched MeSH terms: Retinol-Binding Proteins, Plasma/metabolism
  7. Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB
    Cytotherapy, 2015 Mar;17(3):293-300.
    PMID: 25456581 DOI: 10.1016/j.jcyt.2014.10.005
    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing.
    Matched MeSH terms: Platelet-Rich Plasma/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links