Displaying all 5 publications

Abstract:
Sort:
  1. Bhatia R, Rastogi RM, Ortega L
    J Vector Borne Dis, 2013 Dec;50(4):239-47.
    PMID: 24499845
    Asia ranks second to Africa in terms of malaria burden. In 19 countries of Asia, malaria is endemic and 2.31 billion people or 62% of the total population in these countries are at risk of malaria. In 2010, WHO estimated around 34.8 million cases and 45,600 deaths due to malaria in Asia. In 2011, 2.7 million cases and > 2000 deaths were reported. India, Indonesia, Myanmar and Pakistan are responsible for >85% of the reported cases (confirmed) and deaths in Asia. In last 10 yr, due to availability of donor's fund specially from Global fund, significant progress has been made by the countries in Asia in scaling-up malaria control interventions which were instrumental in reducing malaria morbidity and mortality significantly. There is a large heterogeneity in malaria epidemiology in Asia. As a result, the success in malaria control/elimination is also diverse. As compared to the data of the year 2000, out of 19 malaria endemic countries, 12 countries were able to reduce malaria incidence (microscopically confirmed cases only) by 75%. Two countries, namely Bangladesh and Malaysia are projected to reach 75% reduction by 2015 while India is projected to reach 50-75% only by 2015. The trend could not be assessed in four countries, namely Indonesia, Myanmar, Pakistan and Timor-Leste due to insufficient consistent data. Numerous key challenges need to be addressed to sustain the gains and eliminate malaria in most parts of Asia. Some of these are to control the spread of resistance in Plasmodium falciparum to artemisinin, control of outdoor transmission, control of vivax malaria and ensuring universal coverage of key interventions. Asia has the potential to influence the malaria epidemiology all over the world as well as to support the global efforts in controlling and eliminating malaria through production of quality-assured ACTs, RDTs and long-lasting insecticidal nets.
    Matched MeSH terms: Plasmodium/drug effects
  2. Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT
    Eur J Med Chem, 2015 Aug 28;101:534-51.
    PMID: 26188909 DOI: 10.1016/j.ejmech.2015.07.009
    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development.
    Matched MeSH terms: Plasmodium/drug effects*
  3. Kondrashin AV
    PMID: 2953074
    Matched MeSH terms: Plasmodium/drug effects
  4. Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, et al.
    Sci Rep, 2016 11 14;6:36958.
    PMID: 27841361 DOI: 10.1038/srep36958
    Kenya is intensifying its national efforts in malaria control to achieve malaria elimination. Detailed characterization of malaria infection among populations living in the areas where the disease is endemic in Kenya is a crucial priority, especially for planning and evaluating future malaria elimination strategy. This study aimed to investigate the distribution and extent of malaria infection on islands in Lake Victoria of Kenya to aid in designing new interventions for malaria elimination. Five cross-sectional surveys were conducted between January 2012 and August 2014 on four islands (Mfangano, Takawiri, Kibuogi and Ngodhe) in Lake Victoria and a coastal mainland (Ungoye). Malaria prevalence varied significantly among settings: highest in Ungoye, followed by the large island of Mfangano and lowest in the three remaining small islands. Of the 3867 malaria infections detected by PCR, 91.8% were asymptomatic, 50.3% were sub-microscopic, of which 94% were also asymptomatic. We observed geographical differences and age dependency in both proportion of sub-microscopic infections and asymptomatic parasite carriage. Our findings highlighted the local heterogeneity in malaria prevalence on islands and a coastal area in Lake Victoria, and provided support for the inclusion of mass drug administration as a component of the intervention package to eliminate malaria on islands.
    Matched MeSH terms: Plasmodium/drug effects
  5. Jegede FE, Oyeyi TI, Abdulrahman SA, Mbah HA, Badru T, Agbakwuru C, et al.
    PLoS One, 2017;12(3):e0174233.
    PMID: 28346490 DOI: 10.1371/journal.pone.0174233
    BACKGROUND: Human immunodeficiency virus (HIV) and malaria co-infection may present worse health outcomes in the tropics. Information on HIV/malaria co-infection effect on immune-hematological profiles is critical for patient care and there is a paucity of such data in Nigeria.

    OBJECTIVE: To evaluate immune-hematological profiles among HIV infected patients compared to HIV/malaria co-infected for ART management improvement.

    METHODS: This was a cross sectional study conducted at Infectious Disease Hospital, Kano. A total of 761 consenting adults attending ART clinic were randomly selected and recruited between June and December 2015. Participants' characteristics and clinical details including two previous CD4 counts were collected. Venous blood sample (4ml) was collected in EDTA tube for malaria parasite diagnosis by rapid test and confirmed with microscopy. Hematological profiles were analyzed by Sysmex XP-300 and CD4 count by Cyflow cytometry. Data was analyzed with SPSS 22.0 using Chi-Square test for association between HIV/malaria parasites co-infection with age groups, gender, ART, cotrimoxazole and usage of treated bed nets. Mean hematological profiles by HIV/malaria co-infection and HIV only were compared using independent t-test and mean CD4 count tested by mixed design repeated measures ANOVA. Statistical significant difference at probability of <0.05 was considered for all variables.

    RESULTS: Of the 761 HIV infected, 64% were females, with a mean age of ± (SD) 37.30 (10.4) years. Prevalence of HIV/malaria co-infection was 27.7% with Plasmodium falciparum specie accounting for 99.1%. No statistical significant difference was observed between HIV/malaria co-infection in association to age (p = 0.498) and gender (p = 0.789). A significantly (p = 0.026) higher prevalence (35.2%) of co-infection was observed among non-ART patients compared to (26%) ART patients. Prevalence of co-infection was significantly lower (20.0%) among cotrimoxazole users compared to those not on cotrimoxazole (37%). The same significantly lower co-infection prevalence (22.5%) was observed among treated bed net users compared to those not using treated bed nets (42.9%) (p = 0.001). Out of 16 hematology profiles evaluated, six showed significant difference between the two groups (i) packed cell volume (p = <0.001), (ii) mean cell volume (p = 0.005), (iii) mean cell hemoglobin concentration (p = 0.011), (iv) absolute lymphocyte count (p = 0.022), (v) neutrophil percentage count (p = 0.020) and (vi) platelets distribution width (p = <0.001). Current mean CD4 count cell/μl (349±12) was significantly higher in HIV infected only compared to co-infected (306±17), (p = 0.035). A significantly lower mean CD4 count (234.6 ± 6.9) was observed among respondents on ART compared to non-ART (372.5 ± 13.2), p<0.001, mean difference = -137.9).

    CONCLUSION: The study revealed a high burden of HIV and malaria co-infection among the studied population. Co-infection was significantly lower among patients who use treated bed nets as well as cotrimoxazole chemotherapy and ART. Six hematological indices differed significantly between the two groups. Malaria and HIV co-infection significantly reduces CD4 count. In general, to achieve better management of all HIV patients in this setting, diagnosing malaria, prompt antiretroviral therapy, monitoring CD4 and some hematology indices on regular basis is critical.

    Matched MeSH terms: Plasmodium/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links