Displaying all 8 publications

Abstract:
Sort:
  1. Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, et al.
    Chem Biol Interact, 2022 Dec 01;368:110238.
    PMID: 36306865 DOI: 10.1016/j.cbi.2022.110238
    Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.
    Matched MeSH terms: Polysaccharides/therapeutic use
  2. Atiq A, Parhar I
    Molecules, 2020 Oct 23;25(21).
    PMID: 33113890 DOI: 10.3390/molecules25214895
    Clinically, gliomas are classified into four grades, with grade IV glioblastoma multiforme being the most malignant and deadly, which accounts for 50% of all gliomas. Characteristically, glioblastoma involves the aggressive proliferation of cells and invasion of normal brain tissue, outcomes as poor patient prognosis. With the current standard therapy of glioblastoma; surgical resection and radiotherapy followed by adjuvant chemotherapy with temozolomide, it remains fatal, because of the development of drug resistance, tumor recurrence, and metastasis. Therefore, the need for the effective therapeutic option for glioblastoma remains elusive. Previous studies have demonstrated the chemopreventive role of naturally occurring pharmacological agents through preventing or reversing the initiation phase of carcinogenesis or arresting the cancer progression phase. In this review, we discuss the role of natural phytochemicals in the amelioration of glioblastoma, with the aim to improve therapeutic outcomes, and minimize the adverse side effects to improve patient's prognosis and enhancing their quality of life.
    Matched MeSH terms: Polysaccharides/therapeutic use
  3. Samrot AV, Sean TC, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, et al.
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):3088-3105.
    PMID: 33098896 DOI: 10.1016/j.ijbiomac.2020.10.104
    Chitosan, collagen, gelatin, polylactic acid and polyhydroxyalkanoates are notable examples of biopolymers, which are essentially bio-derived polymers produced by living cells. With the right techniques, these biological macromolecules can be exploited for nanotechnological advents, including for the fabrication of nanocarriers. In the world of nanotechnology, it is highly essential (and optimal) for nanocarriers to be biocompatible, biodegradable and non-toxic for safe in vivo applications, including for drug delivery, cancer immunotherapy, tissue engineering, gene delivery, photodynamic therapy and many more. The recent advancements in understanding nanotechnology and the physicochemical properties of biopolymers allows us to modify biological macromolecules and use them in a multitude of fields, most notably for clinical and therapeutic applications. By utilizing chitosan, collagen, gelatin, polylactic acid, polyhydroxyalkanoates and various other biopolymers as synthesis ingredients, the 'optimal' properties of a nanocarrier can easily be attained. With emphasis on the aforementioned biological macromolecules, this review presents the various biopolymers utilized for nanocarrier synthesis along with their specific synthetization methods. We further discussed on the characterization techniques and related applications for the synthesized nanocarriers.
    Matched MeSH terms: Polysaccharides/therapeutic use
  4. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al.
    ScientificWorldJournal, 2014;2014:768323.
    PMID: 24526922 DOI: 10.1155/2014/768323
    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
    Matched MeSH terms: Polysaccharides/therapeutic use
  5. Lew SY, Teoh SL, Lim SH, Lim LW, Wong KH
    Mini Rev Med Chem, 2020;20(15):1518-1531.
    PMID: 32452327 DOI: 10.2174/1389557520666200526125534
    Depression is the most common form of mental illness and the major cause of disability worldwide. Symptoms of depression, including feelings of intense sadness and hopelessness, may occur after a specific event or in response to a gradual decline in health and functional status, often associated with aging. Current therapies for treating these symptoms include antidepressant drugs, counseling and behavioral therapy. However, antidepressant drugs are associated with mild to severe adverse effects, which has prompted the need for better treatment options. Medicinal mushrooms are valuable sources of food and medicine and are increasingly being used as supplements or as alternative medicines in standard healthcare. Numerous studies have provided insights into the neuroprotective effects of medicinal mushrooms, which are attributed to their antioxidant, anti-neuroinflammatory, cholinesterase inhibitory and neuroprotective properties. In this review, we comprehensively examine the role of these medicinal mushrooms in the treatment of depression. However, to apply these natural products in clinical settings, the therapeutic agent needs to be properly evaluated, including the active ingredients, the presence of synergistic effects, efficient extraction methods, and stabilization of the active ingredients for delivery into the body as well as crossing the blood-brain barrier.
    Matched MeSH terms: Polysaccharides/therapeutic use
  6. Zhu B, Qian C, Zhou F, Guo J, Chen N, Gao C, et al.
    J Ethnopharmacol, 2020 May 10;253:112663.
    PMID: 32045682 DOI: 10.1016/j.jep.2020.112663
    ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing) is traditionally used as a folk medicine for the treatments of inflammation, high fever, hepatitis and cancer, and can improve the immune function of the patient. It belongs to the family of Vitaceae, and is mainly distributed in southeast China (Yunnan province) and can be found in India (Andaman Islands), Myanmar, Thailand, Vietnam, Malaysia and Indonesia in the valleys with 1100-1300 m above the sea level.

    AIM OF THE STUDY: The present study aimed to characterize the chemical properties of a purified polysaccharide extracted from the aerial part of Tetrastigma hemsleyanum (SYQP) and investigate its antipyretic and antitumor effects in mice models.

    MATERIALS AND METHODS: Water-soluble crude polysaccharides from the aerial parts of Tetrastigma hemsleyanum were extracted and fractionated by DEAE and gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, and FTIR analysis were performed to characterize the SYQP. Antipyretic effect of SYQP was examined using Brewer's yeast induced hyperthermia test. Antitumor effect was investigated using H22 tumor bearing mice. The serum cytokines were determined to evaluated the biological activities of SYQP.

    RESULTS: SYQP was composed of galacturonic acid (GalA), glucose (Glc), mannose (Man), arabinose (Ara), galactose (Gal), and rhamnose (Rha) with a molar ratio of 11.3:7.1:2.5:1.0:0.9:0.5 and it had an average molecular weight of 66.2 kDa. The oral administration of SYQP at 200 and 400 mg/kg could markedly suppress the hyperthermia of mice induced by Brewer's yeast and decrease the production of cytokines especially prostaglandin E2 (PGE2) in the serum of mice. SYQP inhibited the growth of H22 tumor in mice with inhibitory rate of 39.9% at the administration dose of 200 mg/kg and increased the production of cytokines such as tumor necrosis factor-alpha (TNF-a) and interferon γ (IFN-γ). Experimental results showed that the preventive administration of SYQP before lipopolysaccharide (LPS) reduced the high cytokine levels such as IL-6, IL-10 and IFN-γ, indicating that SYQP might act as a competitor with LPS to interact with toll like receptor 4 (TLR4), which further regulated the secretion of cytokines.

    CONCLUSION: The anti-inflammatory and antitumor activities of SYQP might be related to its regulation of host immune function by controlling the secretion of cytokines.

    Matched MeSH terms: Polysaccharides/therapeutic use*
  7. Razali FN, Sinniah SK, Hussin H, Zainal Abidin N, Shuib AS
    Int J Biol Macromol, 2016 Nov;92:185-193.
    PMID: 27365117 DOI: 10.1016/j.ijbiomac.2016.06.079
    A polysaccharide fraction from Solanum nigrum, SN-ppF3 was shown previously to have an immunomodulatory activity where it could possibly be used to enhance the host immune response in fighting cancer. The non-toxic SN-ppF3 was fed orally to breast tumor bearing-mice with concentrations of 250 and 500mg/kg for 10days. During the treatment period, size of the tumor and weight of the mice were monitored. At the end of the treatment, blood, tumor, spleen and thymus were harvested for physiological and immunological analyses. After the treatment, the tumor volume and tumor weight were significantly inhibited by 65% and 40%, respectively. Based on the histological observation, the treatment of SN-ppF3 resulted in the disruption of tumor cells morphology. The increase in infiltrating T cells, NK cells and macrophages were observed in tumor tissues of the treated mice, which partly explained the higher apoptosis tumor cells observed in the treated mice. Moreover, the level of TNF-α, IFN-γ and IL-4 were elevated, while the level of IL-6 was decreased significantly, in serum of the treated mice. These results suggested that tumor suppression mechanisms observed in SN-ppF3-treated mice were most probably due through enhancing the host immune response.
    Matched MeSH terms: Polysaccharides/therapeutic use*
  8. Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N
    PLoS One, 2015;10(6):e0128453.
    PMID: 26083103 DOI: 10.1371/journal.pone.0128453
    Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are an important cause of morbidity and impact significantly on quality of life. Overall, current treatments do not sustain a long-term clinical remission and are associated with adverse effects, which highlight the need for new treatment options. Fucoidans are complex sulphated, fucose-rich polysaccharides, found in edible brown algae and are described as having multiple bioactivities including potent anti-inflammatory effects. Therefore, the therapeutic potential of two different fucoidan preparations, fucoidan-polyphenol complex (Maritech Synergy) and depyrogenated fucoidan (DPF) was evaluated in the dextran sulphate sodium (DSS) mouse model of acute colitis. Mice were treated once daily over 7 days with fucoidans via oral (Synergy or DPF) or intraperitoneal administration (DPF). Signs and severity of colitis were monitored daily before colons and spleens were collected for macroscopic evaluation, cytokine measurements and histology. Orally administered Synergy and DPF, but not intraperitoneal DPF treatment, significantly ameliorated symptoms of colitis based on retention of body weight, as well as reduced diarrhoea and faecal blood loss, compared to the untreated colitis group. Colon and spleen weight in mice treated with oral fucoidan was also significantly lower, indicating reduced inflammation and oedema. Histological examination of untreated colitis mice confirmed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and oedema, while all aspects of this pathology were alleviated by oral fucoidan. Importantly, in this model, the macroscopic changes induced by oral fucoidan correlated significantly with substantially decreased production of at least 15 pro-inflammatory cytokines by the colon tissue. Overall, oral fucoidan preparations significantly reduce the inflammatory pathology associated with DSS-induced colitis and could therefore represent a novel nutraceutical option for the management of IBD.
    Matched MeSH terms: Polysaccharides/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links