Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Ku PX, Abu Osman NA, Yusof A, Wan Abas WA
    PLoS One, 2012;7(7):e41539.
    PMID: 22848523 DOI: 10.1371/journal.pone.0041539
    Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.
    Matched MeSH terms: Posture/physiology*
  2. Ku PX, Abu Osman NA, Wan Abas WA
    Gait Posture, 2014 Feb;39(2):672-82.
    PMID: 24331296 DOI: 10.1016/j.gaitpost.2013.07.006
    Postural control has been widely evaluated for the normal population and different groups over the past 20 years. Numerous studies have investigated postural control in quiet standing posture among amputees. However, a comprehensive analysis is lacking on the possible contributing factors to balance. The present systematic review highlights the current findings on variables that contribute to balance instability for lower extremity amputees. The search strategy was performed on PubMed, Web of Science, Medline, Scopus, and CINAHL and then followed by additional manual searching via reference lists in the reviewed articles. The quality of the articles was evaluated using a methodological quality assessment tool. This review included and evaluated a total of 23 full-text articles. Despite the inconsistencies in the methodological design of the studies, all articles scored above the acceptable level in terms of quality. A majority of the studies revealed that lower extremity amputees have increased postural sway in the standing posture. Asymmetry in body weight, which is mainly distributed in the non-amputated leg, was described. Aside from the centre of pressure in postural control, sensory inputs may be a related topic for investigation in view of evidence on their contribution, particularly visual input. Other balance-related factors, such as stump length and patients' confidence level, were also neglected. Further research requires examination on the potential factors that affect postural control as the information of standing postural is still limited.
    Matched MeSH terms: Posture/physiology*
  3. Ku PX, Abu Osman NA, Yusof A, Wan Abas WA
    J Biomech, 2012 Jun 1;45(9):1638-42.
    PMID: 22507349 DOI: 10.1016/j.jbiomech.2012.03.029
    Postural stability is crucial in maintaining body balance during quiet standing, locomotion, and any activities that require a high degree of balance performance, such as participating in sports and dancing. Research has shown that there is a relationship between stability and body mass. The aims of this study were to examine the impact that two variables had on static postural control: body mass index (BMI) and gender. Eighty healthy young adults (age=21.7±1.8 yr; height=1.65±0.09 m; mass=67.5±19.0 kg) participated in the study and the static postural control was assessed using the Biodex Balance System, with a 20 Hz sampling rate in the bipedic stance (BLS) and unipedic stance (ULS) for 30s. Five test evaluations were performed for each balance test. Postural control was found to be negatively correlated with increased adiposity, as the obese BMI group performed significantly poorer than the underweight, normal weight and overweight groups during BLS and ULS tests. The underweight, normal weight and overweight groups exhibited greater anterior-posterior stability in postural control during quiet stance. In addition, female displayed a trend of having a greater postural sway than male young adults, although it was evidenced in only some BMI groups. This study revealed that BMI do have an impact on postural control during both BLS and ULS. As such, BMI and gender-specific effects should be taken into consideration when selecting individuals for different types of sporting activities, especially those that require quiet standing.
    Matched MeSH terms: Posture/physiology*
  4. Gopalai AA, Senanayake SM, Kiong LC, Gouwanda D
    J Bodyw Mov Ther, 2011 Oct;15(4):453-64.
    PMID: 21943619 DOI: 10.1016/j.jbmt.2010.10.005
    A method for assessing balance, which was sensitive to changes in the postural control system is presented. This paper describes the implementation of a force-sensing platform, with force sensing resistors as the sensing element. The platform is capable of measuring destabilized postural perturbations in dynamic and static postural conditions. Besides providing real-time qualitative assessment, the platform quantifies the postural control of the subjects. This is done by evaluating the weighted center of applied pressure distribution over time. The objective of this research was to establish the feasibility of using the force-sensing platform to test and gauge the postural control of individuals. Tests were conducted in Eye Open and Eye Close states on Flat Ground (static condition) and the balance trainer (dynamic condition). It was observed that the designed platform was able to gauge the sway experienced by the body when subject's states and conditions changed.
    Matched MeSH terms: Posture/physiology
  5. Liu K, Wang H, Xiao J, Taha Z
    Comput Intell Neurosci, 2015;2015:158478.
    PMID: 25866500 DOI: 10.1155/2015/158478
    The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals' standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.
    Matched MeSH terms: Posture/physiology*
  6. Zulkifli SS, Loh WP
    Foot Ankle Surg, 2020 Jan;26(1):25-32.
    PMID: 30600155 DOI: 10.1016/j.fas.2018.12.005
    The science of foot pressure studies the forces acting on the bottom and different regions of the foot along with the pressure exerted on the plantar surface with the interacting surface in contact. The information derived gave impact to human biomechanical assessment on body balance and ergonomics posture during gait. Various experiments designed at generating foot pressure data returns only with limited knowledge generated. Obviously, the procedure for experiment design needs to be properly understood from the foot morphology aspects; healthiness, footwear, surface in contact, load and forces impacts, and the foot sensitivity as well as the specification for the foot pressure. This paper reviews the proper preliminary experimental setups for foot pressure measurement analysis during static or dynamic gait. The strength and limitations of recent devices used and considerable variables are also discussed. The overall review explains that the comfortable natural gait in relation to the aspects of sensitivity, load, time duration, and stability are the standard considerations for plantar pressure experiments.
    Matched MeSH terms: Posture/physiology*
  7. Khan SJ, Khan SS, Usman J
    Foot (Edinb), 2019 Jun;39:122-128.
    PMID: 30580888 DOI: 10.1016/j.foot.2018.06.002
    BACKGROUND: Toe-in and toe-out foot positions have not yet been tested for dynamic balance and risk of fall. The aim of this study was to investigate the effects of these two modifications on static and dynamic postural stability and risk of fall through instrumental (Biodex Balance System®) and functional (timed up and go-TUG test) tools.

    METHODOLOGY: Twenty healthy adults (8 males, 12 females, age: 29±4.10years, BMI: 21.56±2.36kg/m2) participated in this study. Static and dynamic (levels 8 and 2) balance with single stance and double stance and dynamic (level 8 and levels 6-2) for risk of fall with double stance were tested with the Biodex Balance System with three self-selected feet positions: straight (13.8°), toe-out (35.6°) and toe-in (-11.9°) for each test condition. Additionally, TUG test was performed with toe-out and toe-in gait.

    RESULTS: The results of repeated measures ANOVA showed significant differences (p<0.05) between straight and modified toe angles in balance at dynamic level 2 with both double and single stance conditions. Significant differences (p<0.001) were also found in TUG scores for the test conditions.

    CONCLUSION: Toe-in and toe-out gait modifications have significant effects on balance at higher levels of platform tilt and functional balance. Further investigations with knee osteoarthritis patients and electromyography may provide insight in balancing strategies adopted by the body in toe-out and toe-in gait.

    Matched MeSH terms: Posture/physiology*
  8. Rabbi MF, Ghazali KH, Mohd II, Alqahtani M, Altwijri O, Ahamed NU
    J Back Musculoskelet Rehabil, 2018;31(6):1097-1104.
    PMID: 29945343 DOI: 10.3233/BMR-170988
    This study aimed to investigate the electrical activity of two muscles located at the dorsal surface during Islamic prayer (Salat). Specifically, the electromyography (EMG) activity of the erector spinae and trapezius muscles during four positions observed while performing Salat, namely standing, bowing, sitting and prostration, were investigated. Seven adult subjects with an average age of 28.1 (± 3.8) years were included in the study. EMG data were obtained from their trapezius and erector spinae muscles while the subjects maintained the specific positions of Salat. The EMG signal was analysed using time and frequency domain features. The results indicate that the trapezius muscle remains relaxed during the standing and sitting positions while the erector spinae muscle remains contracted during these two positions. Additionally, during the bowing and prostration positions of Salat, these two muscles exhibit the opposite activities: the trapezius muscle remains contracted while the erector spinae muscle remains relaxed. Overall, both muscles maintain a balance in terms of contraction and relaxation during bowing and prostration position. The irregularity of the neuro-muscular signal might cause pain and prevent Muslims from performing their obligatory prayer. This study will aid the accurate understanding of how the back muscles respond in specific postures during Salat.
    Matched MeSH terms: Posture/physiology*
  9. Ku PX, Abu Osman NA, Wan Abas WAB
    J Biomech, 2016 Dec 08;49(16):3943-3948.
    PMID: 27865478 DOI: 10.1016/j.jbiomech.2016.11.006
    Balance control plays an important role in maintaining daily activity. However, studies on postural control among middle-aged adults are scarce. This study aims (i) to examine directional control (DCL) and electromyography activity (EMG) for different stability levels, and (ii) to determine left-right asymmetry for DCL and muscle activity among sedentary middle-aged adults. Twenty healthy, middle-aged adults (10 males, 10 females; age=50.0±7.5yrs; body height: 1.61±0.10m; body mass: 70.0±14.5kg) participated in the study. EMG for left and right side of rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG) were recorded. Two-way repeated measures analysis of variance was used to assess the effect of dynamic level on DCL and EMG, whereas independent sample t-test was conducted to analyse the asymmetries of DCL and EMG for the left and right leg. When the dynamic tilt surface increased, DCL scores significantly decreased (except forward, forward-rightward, and backward-leftward direction) and only RF muscle indicated significant differences. Left-right asymmetry was found in BF and MG muscles. No significant gender difference was observed in DCL and EMG. These data demonstrated that increased dynamic tilt surface may increase the displacement of center of pressure of certain directions, and stimulate RF activity in dynamic stance among sedentary middle-aged adults. Further studies should be conducted to examine the dynamic stance and muscle activity of the lower limb in age-matched patient groups with balance abnormalities.
    Matched MeSH terms: Posture/physiology*
  10. Uwamahoro R, Sundaraj K, Feroz FS
    Sensors (Basel), 2023 Sep 29;23(19).
    PMID: 37836995 DOI: 10.3390/s23198165
    Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
    Matched MeSH terms: Posture/physiology
  11. Mehdikhani M, Khalaj N, Chung TY, Mazlan M
    Proc Inst Mech Eng H, 2014 Aug;228(8):819-23.
    PMID: 25205748 DOI: 10.1177/0954411914547714
    Feet displacement is recognized to be an important element in standing and is also linked to postural instability in elderly people with diabetes. This study investigates standing balance in diabetic patients in four asymmetric feet displacements. Quiet standing balance was investigated using the Biodex Balance System in 18 diabetic patients and compared with 18 control elderly subjects. The four standing conditions, namely, comfortable feet position, preferred feet position with a stance width of 17 cm and 15° angle between the medial borders, feet side by side, and heel side by side with a 30° angle between medial edges of feet were evaluated (i.e. eyes opened, eyes closed). The overall stability was calculated by measuring anterior-posterior and medial-lateral indices in standing conditions. Differences among feet positions were compared using an analysis of variance and the independent t-test. The diabetic patients were unstable in the medial-lateral direction when standing with feet side by side versus heel side by side with a 30° angle between medial edges of feet (p = 0.012 and 0.011, respectively), while in controls the anterior-posterior stability scores between standing in preferred foot position with stance width of 17 cm and 15° angle between the medial borders versus feet side by side, and heel side by side with a 30° angle between medial edges of feet versus preferred foot position with stance width of 17 cm and 15° angle between the medial borders had significant difference (p 
    Matched MeSH terms: Posture/physiology*
  12. Islam A, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    Muscle Nerve, 2015 Jun;51(6):899-906.
    PMID: 25204740 DOI: 10.1002/mus.24454
    In this study, we analyzed the crosstalk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles of the forearm during wrist flexion (WF) and extension (WE) and radial (RD) and ulnar (UD) deviations.
    Matched MeSH terms: Posture/physiology*
  13. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Posture/physiology*
  14. Chu AH, Moy FM
    PLoS One, 2013;8(4):e61723.
    PMID: 23613917 DOI: 10.1371/journal.pone.0061723
    Prolonged sitting is associated with increased weight and higher risks for abdominal obesity, dyslipidaemia, hyperglycaemia and hypertension among the adult population. This has been well documented in the West, but studies on these associations are lacking in developing countries, including Malaysia.
    Matched MeSH terms: Posture/physiology*
  15. Mokhtar S, Azizi ZA, Govindarajanthran N
    Asian J Surg, 2008 Jul;31(3):124-9.
    PMID: 18658010
    OBJECTIVE: This study investigated the effects of posture and also intermittent foot and calf compression on peak systolic flow of the popliteal artery in a normal population.

    METHODS: This was a prospective study carried out in normal subjects at the Vascular Laboratory, Department of Surgery, Hospital Kuala Lumpur, from March 2006 to September 2006. The study compared the popliteal artery blood flow during change of posture from the horizontal (supine) to the sitting position and the effect of intermittent pneumatic compression (IPC) of the foot and calf on popliteal artery blood flow immediately and 10 minutes after cessation of compression.

    RESULTS: A total of 15 subjects involving 30 limbs were examined in this study. On comparing flows between the horizontal and sitting position, there was a mean reduction in blood flow of 23% (p < 0.005). Immediately after compression of the foot and calf, there was an increase in blood flow of between 4% and 35% with a mean of 15% (p < 0.05). Peak systolic flows at 10 minutes postcompression were 536 +/- 95 mL/min, which was still significantly higher than precompression measurements.

    CONCLUSION: There is a significant reduction in popliteal artery blood flow on changing from the supine to the sitting position. Popliteal artery blood flow is higher than baseline after 15 minutes of intermittent pneumatic foot and calf compression. The increase in popliteal artery blood flow is still present 10 minutes after cessation of IPC.

    Matched MeSH terms: Posture/physiology*
  16. Lim HH, Ong CH
    Med J Malaysia, 2001 Jun;56 Suppl C:41-5.
    PMID: 11814248
    The Pedriolle torsion meter is an established method of vertebral rotation assessment in scoliosis. However, the assessment of scoliosis by this method is static and indirect. The objective of this study is to compare the accuracy of a direct method of assessing scoliosis rotation by fluoroscopy compared to the Pedriolle torsion meter. Secondly, to determine that vertebral body rotation changes with supine posture compared to erect position. Eight volunteers with idiopathic scoliosis were assessed for the apical vertebral rotation with this method and the Pedriolle torsion meter. These patients were also assessed in the supine and erect position with the fluoroscopic method to determine if the apical vertebral rotation would change with posture. The mean Cobb angle of the curves was 62.8 degrees (range 45 degrees to 86 degrees). The mean apical vertebral rotation in a standing position was assessed to be 21.5 degrees by Pedriolle torsion meter and 29 degrees by the fluoroscopic method. This difference was not statistically significant by the student t-test. In most patient, the rotation of vertebrae improved by a varying degree ranging from none to 24 degrees in the supine position. In conclusion, the fluoroscopic method is an alternate mean of measuring vertebrae rotation in idiopathic scoliosis, with comparable accuracy to the Pedriolle torsion meter method. The amount of vertebral rotation changes with posture of the patient.
    Matched MeSH terms: Posture/physiology
  17. Chan CYW, Chiu CK, Kwan MK
    Spine (Phila Pa 1976), 2016 Aug 15;41(16):E973-E980.
    PMID: 26909833 DOI: 10.1097/BRS.0000000000001516
    STUDY DESIGN: A prospective study.

    OBJECTIVE: The aim of this study was to analyze the proximal thoracic (PT) flexibility and its compensatory ability above the "potential UIV."

    SUMMARY OF BACKGROUND DATA: Shoulder and neck imbalance can be caused by overcorrection of the main thoracic (MT) curve due to inability of PT segment to compensate.

    METHODS: Cervical supine side bending (CSB) radiographs of 100 Lenke 1 and 2 patients were studied. We further stratified Lenke 1 curves into Lenke 1-ve: PT side bending (PTSB) 80.0% of cases of the PT segment were unable to compensate at T3-T6. In Lenke 1+ve curves, 78.4% were unable to compensate at T6, followed by T5 (75.7%), T4 (73.0%), T3 (59.5%), T2 (27.0%), and T1 (21.6%). In Lenke 1-ve curves, 36.4% of cases were unable to compensate at T6, followed by T5 (45.5%), T4 (45.5%), T3 (30.3%), T2 (21.2%), and T1 (15.2%). A significant difference between Lenke 1-ve and Lenke 1+ve was observed from T3 to T6. The difference between Lenke 1+ve and Lenke 2 curves was significant only at T2.

    CONCLUSION: The compensation ability and the flexibility of the PT segments of Lenke 1-ve and Lenke 1+ve curves were different. Lenke 1+ve curves demonstrated similar characteristics to Lenke 2 curves.

    LEVEL OF EVIDENCE: 3.

    Matched MeSH terms: Posture/physiology
  18. Strassheim V, Newton JL, Tan MP, Frith J
    J Hypertens, 2016 Oct;34(10):1933-41.
    PMID: 27442791 DOI: 10.1097/HJH.0000000000001043
    OBJECTIVE: The systematic review and meta-analysis aims to determine the efficacy and safety of droxidopa in the treatment of orthostatic hypotension, following its recent approvals in the United States.

    METHODS: MEDLINE, EMBASE, PubMed, Cochrane Controlled Trials Register, Web of Science, ProQuest, and the WHO Clinical Trials Registry were searched. Studies were included if they randomized adults with orthostatic hypotension to droxidopa or to control, and outcomes related to symptoms, daily activity, blood pressure, or adverse events. Data were extracted independently by two reviewers. Risk of bias was judged against the Cochrane risk of bias tool and quality of evidence measured using Grading of Recommendations Assessment, Development and Evaluation criteria. A fixed-effects model was used for pooled analysis.

    RESULTS: Of 224 identified records, four studies met eligibility, with a pooled sample size of 494. Study duration was between 1 and 8 weeks. Droxidopa was effective at reducing dizziness [mean difference -0.97 (95% confidence interval -1.51, -0.42)], overall symptoms [-0.52 (-0.98, -0.06)] and difficulty with activity [-0.86 (-1.34, -0.38)]. Droxidopa was also effective at improving standing SBP [3.9 (0.1, 7.69)]. Rates of adverse events were similar between droxidopa and control groups, including supine hypertension [odds ratio 1.93 (0.87, 4.25)].

    CONCLUSION: Droxidopa is well tolerated and effective at reducing the symptoms associated with neurogenic orthostatic hypotension without increasing the risk of supine hypertension.

    REGISTRATION: PROSPERO ID CRD42015024612.

    Matched MeSH terms: Posture/physiology
  19. Yuen GK, Clements JB, Ramalingam V, Sundar V
    Clin Ter, 2021 Mar 15;172(2):163-167.
    PMID: 33763681 DOI: 10.7417/CT.2021.2305
    Conclusion: The obtained results conclude piano players are highly prone to the risk of developing PRMSD in the upper body.

    Results: The findings showed piano players have a higher NDI, lower CVA, and RSP when compared with the non-piano players at a statistically significant level of p-value <0.05.

    Objective: Playing-related musculoskeletal disorders (PRMSD) are a common problem for the pianist. The poor upper body ergonomics influences the natural positioning of the neck and shoulders, which involves forward head posture (FHP) and rounded shoulder posture (RSP). This misaligned position could produce a sensation of pain over the upper body, which affects the piano player and computer users with similar ergonomic posture. Recently, photogrammetry methods are commonly applied in a clinical setting to assess posture. The goal of this research is to compare the upper body playing-related muscu-loskeletal disorders between the piano and the non-piano players by applying photogrammetry.

    Materials and Methods: This causal-comparative study includes 70 participants with 35 piano and 35 non-piano players. The participant's FHP was assessed using a digitized photo to record the Craniovertebral angle (CVA) with the support of Kinovea software. Besides, digital Vernier Calliper used to assess the scapular index on the RSP and Neck disability indices (NDI) used to measure neck pain and functional disability of the participants.

    Matched MeSH terms: Posture/physiology*
  20. Mohd Said MR, Wong Z, Abdul Rani R, Ngiu CS, Raja Ali RA, Lee YY
    J Gastroenterol Hepatol, 2021 May;36(5):1244-1252.
    PMID: 33002243 DOI: 10.1111/jgh.15284
    BACKGROUND AND AIM: Variations in the Chicago 3.0 normative metrics may exist with different postures and with different provocative swallow materials in a healthy Asian population.

    METHOD: Eligible healthy Malay volunteers were invited to undergo the high-resolution esophageal manometry (inSIGHT Ultima, Diversatek Healthcare, Milwaukee, WI, USA). In recumbent and standing positions, test swallows were performed using liquid, viscous, and solid materials. Metrics including integrated relaxation pressure 4 s (IRP-4 s, mmHg), distal contractile integral (DCI, mmHg s cm), distal latency (DL, s), and peristaltic break (PB, cm) were reported in median and 95th percentile.

    RESULTS: Fifty of 57 screened participants were recruited, and 586 saline, 265 viscous, and 261 solid swallows were analyzed. Per-patient wise, in the recumbent position, 95th percentile for IRP-4 s, DCI, DL, and PB were 16.5 mmHg, 2431 mmHg s cm, 8.5 s, and 7.2 cm, respectively. We observed that with each posture, the use of viscous swallows led to changes in DL, but the use of solid swallows led to more changes in the metrics including DCI and length of PB. Compared with a recumbent posture, anupright posture led to lower IRP-4 s and DCI values. Both per-patient analysis and per-swallow analyses yielded almost similar results when comparing the different postures and types of swallows. No major motility disorders were observed in this cohort of asymptomatic population. However, more motility disorders were reported in the upright position.

    CONCLUSIONS: Variations in metrics can be observed in different postures and with different provocative swallow materials in a healthy population. The normative Chicago 3.0 metrics are also determined for the Malay population.

    Matched MeSH terms: Posture/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links