METHODS: The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system.
RESULTS: Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results.
CONCLUSION: The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.
Aim: To investigate the concurrent validity and reliability of the WBB for balance assessment in healthy young adults.
Methods: Thirty-two young adults participated in this study. Their ability to balance was tested while standing on a WBB and a laboratory-grade force platform, under three conditions: feet together with eyes open, feet together with eyes closed and semi-tandem standing with eyes open. They had 10 min resting period between tests. The agreement between the WBB and the laboratory-grade force platform was investigated, and the reliability of the WBB was determined.
Results: A poor agreement between the WBB and the laboratory-grade force platform was found for all standing conditions [intraclass correlation coefficient (ICC) = 0.03 to 0.07]. A moderate to high reliability was found for the WBB for balance assessment in healthy young adults (ICC = 0.66 to 0.76).
Conclusion: The WBB was found to be a reliable tool for static balance assessment in healthy young adults. However, it had poor validity compared to the laboratory-grade force platform.
OBJECTIVE: The three main objectives are to analyze published pen-and-paper observational methods, to extract and understand the risk levels of each method and to identify their associated health effects.
METHODOLOGY: The authors searched scientific databases and the Internet for materials from 1970 to 2013 using the following keywords: ergo, posture, method, observational, postural angle, health effects, pain and diseases. Postural assessments of upper arms, lower arms, wrists, neck, back and legs in six pen-and-paper-based observational methods are highlighted, extracted in groups and linked with associated adverse health effects.
RESULTS: The literature reviewed showed strengths and limitations of published pen-and-paper-based observational methods in determining the work activities, risk levels and related postural angles to adverse health effects. This provided a better understanding of unsafe work postures and how to improve these postures.
CONCLUSION: Many pen-and-paper-based observational methods have been developed. However, there are still many limitations of these methods. There is, therefore, a need to develop a new pen-and-paper-based observational method for assessing postural problems.