Displaying all 12 publications

Abstract:
Sort:
  1. Clifford MN, Jaganath IB, Ludwig IA, Crozier A
    Nat Prod Rep, 2017 Dec 13;34(12):1391-1421.
    PMID: 29160894 DOI: 10.1039/c7np00030h
    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.
    Matched MeSH terms: Quinic Acid*
  2. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
    Matched MeSH terms: Quinic Acid
  3. Chan EW, Lim YY, Tan SP
    Pharmacognosy Res, 2011 Jul;3(3):178-84.
    PMID: 22022166 DOI: 10.4103/0974-8490.85003
    Chlorogenic acid (CGA) or 5-caffeoylquinic acid, was found to be the dominant phenolic compound in leaves of Etlingera elatior (Zingiberaceae). The CGA content of E. elatior leaves was significantly higher than flowers of Lonicera japonica (honeysuckle), the commercial source. In this study, a protocol to produce a standardised herbal CGA extract from leaves of E. elatior using column chromatography was developed.
    Matched MeSH terms: Quinic Acid
  4. Hasyima Omar M, González Barrio R, Pereira-Caro G, Almutairi TM, Crozier A
    Int J Food Sci Nutr, 2021 Jun;72(4):511-517.
    PMID: 33238790 DOI: 10.1080/09637486.2020.1850650
    3',4'-Dihydroxycinnamic acid (aka caffeic acid) is a common dietary component found in a variety of plant-derived food products either in a free form or esterified as in chlorogenic acids such as 5-O-caffeoylquinic acid. The dihydroxycinnamate is produced principally by hydrolysis in the colon of 5-O-caffeoylquinic acid and other caffeoylquinic acid esters, and is catabolised by the resident microbiota prior to absorption. In the present study 3',4'-dihydroxycinnamic acid was incubated in vitro, with or without glucose, under anaerobic conditions with faecal slurries obtained from five volunteers. The main resultant catabolites to accumulate were 3-(3',4'-dihydroxyphenyl)propanoic acid (aka dihydrocaffeic acid), 3-(3'-hydroxyphenyl)propanoic acid and phenylacetic acid. Both the rate of degradation of the hydroxycinnamate substrate and the catabolite profile varied between the faecal samples from the individual volunteers. Overall there was no clear cut effect when glucose was added to incubation medium.
    Matched MeSH terms: Quinic Acid/analogs & derivatives; Quinic Acid/metabolism
  5. Murugesu K, Murugaiyah V, Saghir SAM, Asmawi MZ, Sadikun A
    Curr Pharm Biotechnol, 2017;18(14):1132-1140.
    PMID: 29564975 DOI: 10.2174/1389201019666180322111800
    BACKGROUND: Ethanolic extract of G. procumbens leaves has been previously shown to possess antihyperlipidemic effects.

    OBJECTIVE: This study was designed to prepare caffeoylquinic acids rich and poor fractions of the ethanolic extract using resin column technology and compare their antihyperlipidemic and antioxidant potentials.

    RESULTS: Among the treatment groups, caffeoylquinic acids rich fraction (F2) and chlorogenic acid (CA, one of the major caffeoylquinic acids) showed potent antihyperlipidemic effects, with significant reductions in total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), atherogenic index (AI) and coronary risk index (CRI) (p<0.01 or better) compared to the hyperlipidemic control at the 58 h. The effect was better than that of ethanolic extract. In addition, only F2 significantly increased the high-density lipoproteincholesterol (HDL-C) level (p<0.05). F2 showed better effect than CA alone (60 mg) despite the fact that it only contained 9.81 mg CA/1000 mg dose. The findings suggest that the di-caffeoylquinic acids (86.61 mg/g dose) may also in part be responsible for the potent antihyperlipidemic effect shown by the F2. Likewise, F2 showed the highest antioxidant activity. Thus, simple fractionation of ethanolic extract using the Amberlite XAD-2 resin technique had successfully enriched the caffeoylquinic acids into F2 with improved antihyperlipidemic and antioxidant capacities than that of the ethanolic extract.

    CONCLUSION: The resin separation technology may find application in caffeoylquinic acids enrichment of plant extracts for pre-clinical studies. The F2 has potential for development into phytopharmaceuticals as adjunct therapy for management of hyperlipidemia.

    Matched MeSH terms: Quinic Acid/analogs & derivatives*; Quinic Acid/isolation & purification; Quinic Acid/pharmacology; Quinic Acid/therapeutic use
  6. Teoh WY, Tan HP, Ling SK, Abdul Wahab N, Sim KS
    Nat Prod Res, 2016;30(4):448-51.
    PMID: 25738869 DOI: 10.1080/14786419.2015.1017726
    Gynura bicolor (Compositae) is a popular vegetable in Asia and believed to confer a wide range of benefits including anti-cancer. Our previous findings showed that the ethyl acetate extract of G. bicolor possessed cytotoxicity and induced apoptotic and necrotic cell death in human colon carcinoma cells (HCT 116). A combination of column chromatography had been used to purify chemical constituents from the ethyl acetate and water extract of G. bicolor leaves. Eight chemical constituents 5-p-trans-coumaroylquinic acid (I), 4-hydroxybenzoic acid (II), rutin (III), kampferol-3-O-rutinoside (IV), 3,5-dicaffeoylquinic acid (V), kampferol-3-O-glucoside (VI), guanosine (VII) and chlorogenic acid (VIII) were isolated from G. bicolor grown in Malaysia. To our best knowledge, all chemical constituents were isolated for the first time from G. bicolor leaves except rutin (III). 3,5-dicaffeoylquinic acid (V), guanosine (VII) and chlorogenic acid (VIII) demonstrated selective cytotoxicity (selective index>3) against HCT 116 cancer cells compared to CCD-18Co human normal colon cells.
    Matched MeSH terms: Quinic Acid/analogs & derivatives; Quinic Acid/isolation & purification
  7. Jackson KMP, Rathinasabapathy T, Esposito D, Komarnytsky S
    Mol Nutr Food Res, 2017 Sep;61(9).
    PMID: 28371117 DOI: 10.1002/mnfr.201601118
    SCOPE: Chicory (Cichorium intybus L.) is a perennial herb often consumed as a vegetable, whereas the ground and roasted roots are blended as a coffee substitute. Caffeoylquinic or chlorogenic acids (CQA), the abundant intermediates of lignin biosynthesis in chicory, have been reported to improve glucose metabolism in humans, but the functional group in their structure responsible for this effect has not been yet characterized.

    METHODS AND RESULTS: Here, we showed that three di-O-caffeoylquinic acids suppressed hepatic glucose production in H4IIE rat hepatoma cells by reducing expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes that regulate hepatic gluconeogenesis. Direct comparisons between CQAs and their metabolites (3-caffeoylquinic, caffeic, and quinic acids) revealed the caffeic acid moiety alone was responsible for the observed effects. Further analysis suggested the activation of PI3K and MAPK pathways as a method of controlling gene expression was shared between caffeoylquinic and caffeic acids. These compounds promoted increased mitochondrial respiration and cellular metabolism, in part by inducing oxidative phosphorylation and proton leak.

    CONCLUSION: We concluded that the caffeic acid moiety was important for suppression of hepatic gluconeogenesis and hyperglycemia, ultimately strengthening the link between dietary interventions based on caffeic acid-containing plant foods and healthy glucose metabolism.

    Matched MeSH terms: Quinic Acid/analogs & derivatives*; Quinic Acid/pharmacology
  8. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Quinic Acid/analogs & derivatives; Quinic Acid/isolation & purification; Quinic Acid/chemistry
  9. Norain Mohd Tamsir, Norhaizan Mohd Esa, Siti Nursalwah Che Omar, Nurul Husna Shafie
    MyJurnal
    Introduction: Manilkara zapota (L.) P. Royen or sapodilla is a fruit-bearing tree that has been cultivated mainly in tropical areas including Mexico and South East Asia. The fruits and the other parts of M. zapota plant have been used since ages ago for various medicinal purposes. However, the data on the antioxidant properties of various parts of M. zapota is limited. Therefore, we aimed to measure the content and capacity of antioxidants in various M. zapota plant parts and also to screen the phytoconstituents present in the part with the highest antioxidant content and capacity. Methods: The in vitro antioxidant evaluation including the content of total phenolic (TPC) and total flavonoids (TFC) as well as β-carotene bleaching and 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of the leaves, seeds, flesh, and peels of M. zapota extracted by aqueous and ethanol were determined. The plant part that exhibited the highest TPC, TFC, and antioxidant capacity was selected for phytoconstituents identification using liq- uid chromatography mass spectrometry. Results: M. zapota leaves aqueous extract exhibited the highest TPC, TFC, and antioxidant capacities and therefore selected for phytoconstituents identification. Our study provide additional data in which a total of 39 phytoconstituents have been identified in the M. zapota leaves including m-coumaric acid, quinic acid, robinetinidol-4alpha-ol, isoorientin 6’’-O-caffeate, apocynin A, and C16 Sphinganine. Conclusion: Thus, our study revealed that M. zapota leaves aqueous extract has potential as a promising naturally-occurring an- tioxidant candidate which could be useful for medicinal and nutritional functions.
    Matched MeSH terms: Quinic Acid
  10. Duangjai A, Nuengchamnong N, Suphrom N, Trisat K, Limpeanchob N, Saokaew S
    Kobe J Med Sci, 2018 Oct 15;64(3):E84-E92.
    PMID: 30666038
    This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
    Matched MeSH terms: Quinic Acid/pharmacology*
  11. Arya A, Al-Obaidi MM, Shahid N, Bin Noordin MI, Looi CY, Wong WF, et al.
    Food Chem Toxicol, 2014 Sep;71:183-96.
    PMID: 24953551 DOI: 10.1016/j.fct.2014.06.010
    The aim of this study was to investigate the synergistic effects of quercetin (QE) and quinic acid (QA) on a STZ-induced diabetic rat model to determine their potential role in alleviating diabetes and its associated complications. In our study design, diabetic rats were treated with single and combined doses of QE and QA for 45days to analyse their effects on liver, kidney and pancreas tissues. The study result showed that QE and QA treated groups down-regulated hyperglycaemia and oxidative stress by up-regulating insulin and C-peptide levels. Moreover, histological observations of the liver, kidney and pancreas of diabetic rats treated with single and combined doses of QE and QA showed a significant improvement in the structural degeneration. Interestingly, the combination dose of QE and QA (50 mg/kg) exhibited maximum inhibition of the pro-apoptotic protein Bax expression and demonstrate enhancement of the anti-apoptotic protein Bcl-2 expression in the kidney tissues, suggesting a protective role in the kidneys of diabetic rats. Taken together, these results indicates the synergistic effects of QE and QA in ameliorating hyperglycaemia, hyperlipidemia and insulin resistance in diabetic rats and therefore, open a new window of research on the combinatorial therapy of flavonoids.
    Matched MeSH terms: Quinic Acid/pharmacology*
  12. Madzuki IN, Lau SF, Abdullah R, Mohd Ishak NI, Mohamed S
    Phytother Res, 2019 Jul;33(7):1784-1793.
    PMID: 31033070 DOI: 10.1002/ptr.6366
    Vernonia amygdalina (VA) is a medicinal tropical herb for diabetes and malaria and believed to be beneficial for joint pains. The antiosteorthritis effects of VA leaf in cartilage explant assays and on postmenopausal osteoarthritis (OA) rat model were investigated. The VA reduced the proteoglycan and nitric oxide release from the cartilage explants with interleukin 1β (IL-1β) stimulation. For the preclinical investigation, ovariectomized (OVX) female rats were grouped (n = 8) into nontreated OA, OA + diclofenac (5 mg/kg), OA + VA extract (150 and 300 mg/kg), and healthy sham control. Monosodium iodoacetate was injected into the knee joints to accelerate OA development. After 8 weeks, the macroscopic, microscopic, and histological images showed that the OA rats treated with VA 300 mg/kg and diclofenac had significantly reduced cartilage erosions and osteophytes unlike the control OA rats. The extract significantly down-regulated the inflammatory prostaglandin E2, nuclear factor κβ, IL-1β, ADAMTS-5, collagen type 10α1, and caspase3 in the OVX-OA rats. It up-regulated the anti-inflammatory IL-10 and collagen type 2α1 mRNA expressions, besides reducing serum collagenases (MMP-3 and MMP-13) and collagen type II degradation biomarker (CTX-II) levels in these rats. The VA (containing various caffeoyl-quinic acids, flavanone-O-rutinoside, luteolin, apigenin derivative and vernonioside D) suppressed inflammation, pain, collagenases as well as cartilage degradation, and improved cartilage matrix synthesis to prevent OA.
    Matched MeSH terms: Quinic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links