METHODS: In this study, prior to synthesis, quality control analysis method for 18F-Fluorocholine was developed and validated, by adapting the equipment set-up used in 18F-Fluorodeoxyglucose (18FFDG) routine production. Quality control on the 18F-Fluorocholine was performed by means of pH, radionuclidic identity, radio-high performance liquid chromatography equipped with ultraviolet, radio- thin layer chromatography, gas chromatography and filter integrity test.
RESULTS: Post-synthesis; the pH of 18F-Fluorocholine was 6.42 ± 0.04, with half-life of 109.5 minutes (n = 12). The radiochemical purity was consistently higher than 99%, both in radio-high performance liquid chromatography equipped with ultraviolet (r-HPLC; SCX column, 0.25 M NaH2PO4: acetonitrile) and radio-thin layer chromatography method (r-TLC). The calculated relative retention time (RRT) in r-HPLC was 1.02, whereas the retention factor (Rf) in r-TLC was 0.64. Potential impurities from 18F-Fluorocholine synthesis such as ethanol, acetonitrile, dimethylethanolamine and dibromomethane were determined in gas chromatography. Using our parameters, (capillary column: DB-200, 30 m x 0.53 mm x 1 um) and oven temperature of 35°C (isothermal), all compounds were well resolved and eluted within 3 minutes. Level of ethanol and acetonitrile in 18F-Fluorocholine were detected below threshold limit; less than 5 mg/ml and 0.41 mg/ml respectively. Meanwhile, dimethylethanolamine and dibromomethane were undetectable.
CONCLUSION: A convenient, efficient and reliable quality control analysis work-up procedure for 18FFluorocholine has been established and validated to comply all the release criteria. The convenient method of quality control analysis may provide a guideline to local GMP radiopharmaceutical laboratories to start producing 18F-Fluorocholine as a tracer for prostate cancer imaging.
OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.
METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.
RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).
CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).
OBJECTIVE: To evaluate the initial staging discrepancy between conventional contrasted computed tomography (CT) and 18F-fluorodeoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) and its impact on management plans for head and neck malignancies.
DESIGN AND SETTING: Prospective cross-sectional study in two tertiary-level hospitals.
METHODS: This study included 30 patients with primary head and neck malignant tumors who underwent contrasted computed tomography and whole-body 18F-FDG PET/CT assessments. The staging and treatment plans were compared with the incremental information obtained after 18F-FDG PET/CT.
RESULTS: 18F-FDG PET/CT was found to raise the stage in 33.3% of the cases and the treatment intent was altered in 43.3% of them, while there was no management change in the remaining 56.7%. 18F-FDG PET/CT had higher sensitivity (96% versus 89.2%) and accuracy (93% versus 86.7%) than conventional contrast-enhanced computed tomography.
CONCLUSION: Our study demonstrated that 18F-FDG PET/CT had higher sensitivity and accuracy for detecting head and neck malignancy, in comparison with conventional contrast-enhanced computed tomography. 18F-FDG PET/CT improved the initial staging and substantially impacted the management strategy for head and neck malignancies.
METHODS: In the previous study, the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine in the reactor was conducted at atmospheric pressure (0 atm) and shorter duration time. In this study, however, the azeotropic drying of non-carried-added (n.c.a) 18FFluorine was made at a high vacuum pressure (- 0.65 to - 0.85 bar) with an additional time of 30 seconds. At the end of the synthesis, the mean radiochemical yield was statistically compared between the two azeotropic drying conditions so as to observe whether the improvement made was significant to the radiochemical yield.
RESULTS: From the paired sample t-test analysis, the improvement done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine was statistically significant (p < 0.05). With the improvement made, the 18F-Fluorcholine radiochemical yield was found to have increase by one fold.
CONCLUSION: Improved 18F-Fluorocholine radiochemical yields were obtained after the improvement had been done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine. It was also observed that improvement made to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine did not affect the 18F-Fluorocholine quality control analysis.
MATERIALS AND METHODS: Two hundred fifty-eight patients with primary liver tumors who underwent FDG-PET before LDLT were enrolled in this retrospective study. Unfavorable tumor histology was defined as primary liver tumor other than a well- or moderately differentiated HCC. Thirteen patients had unfavorable tumor histology, including 2 poorly differentiated HCC, 2 sarcomatoid HCC, 5 combined hepatocellular cholangiocarcinoma, 3 intrahepatic cholangiocarcinoma, and 1 hilar cholangiocarcinoma.
RESULTS: FDG-PET positivity was significantly associated with unfavorable tumor histology (P < 0.001). Both FDG-PET positivity and unfavorable tumor histology were significant independent predictors of tumor recurrence and overall survival. In a subgroup analysis of patients with FDG-PET-positive tumors, unfavorable tumor histology was a significant independent predictor of tumor recurrence and overall survival. High FDG uptake (tumor to non-tumor uptake ratio ≥ 2) was a significant predictor of unfavorable tumor histology. Patients with high FDG uptake and/or unfavorable tumors had significantly higher 3-year cumulative recurrence rate (70.8% versus 26.2%, P = 0.004) and worse 3-year overall survival (34.1% versus 70.8%, P = 0.012) compared to those with low FDG uptake favorable tumors.
CONCLUSIONS: The expression of FDG-PET is highly associated with histology of explanted HCC and predicts the recurrence. FDG-PET-positive tumors with high FDG uptake may be considered contraindication for LDLT due to high recurrence rate except when pathology proves favorable histology.
MATERIALS AND METHODS: Three populations were retrospectively examined. Group 1 included 1,137 consecutive18F-FDG PET/CT studies and was used to determine the prevalence of focal uptake at the RI or IC. Group 2 included 361 cases from a 10-year period with18F-FDG PET/CT and MRI of shoulder performed within 45 days of each other and was used to enrich the study group. Group 3 included 109 randomly selected patients from the same time frame as groups 1 and 2 and was used to generate the control group. The study group consisted of 15 cases from the three groups, which had positive PET findings. PET/CT images were assessed in consensus by two musculoskeletal radiologists. The reference standard for a diagnosis of AC was clinical and was made by review of the medical record by a pain medicine physician.
RESULTS: The prevalence of focal activity at either the RI or IC ("positive PET") was 0.53%. Nine patients had a clinical diagnosis of AC and 15 patients had a positive PET. The sensitivity and specificity of PET for detection of AC was 56% and 87%, respectively. PET/CT had a positive likelihood ratio for AC of 6.3 (95% CI: 2.8-14.6).
CONCLUSIONS: Increased uptake at the RI or IC on PET/CT confers a moderate increase in the likelihood of AC.