Displaying all 18 publications

Abstract:
Sort:
  1. Karami A, Golieskardi A, Keong Choo C, Larat V, Galloway TS, Salamatinia B
    Sci Rep, 2017 04 06;7:46173.
    PMID: 28383020 DOI: 10.1038/srep46173
    The occurrence of microplastics (MPs) in saltwater bodies is relatively well studied, but nothing is known about their presence in most of the commercial salts that are widely consumed by humans across the globe. Here, we extracted MP-like particles larger than 149 μm from 17 salt brands originating from 8 different countries followed by the identification of their polymer composition using micro-Raman spectroscopy. Microplastics were absent in one brand while others contained between 1 to 10 MPs/Kg of salt. Out of the 72 extracted particles, 41.6% were plastic polymers, 23.6% were pigments, 5.50% were amorphous carbon, and 29.1% remained unidentified. The particle size (mean ± SD) was 515 ± 171 μm. The most common plastic polymers were polypropylene (40.0%) and polyethylene (33.3%). Fragments were the primary form of MPs (63.8%) followed by filaments (25.6%) and films (10.6%). According to our results, the low level of anthropogenic particles intake from the salts (maximum 37 particles per individual per annum) warrants negligible health impacts. However, to better understand the health risks associated with salt consumption, further development in extraction protocols are needed to isolate anthropogenic particles smaller than 149 μm.
    Matched MeSH terms: Salts/chemistry*
  2. Suraparaju SK, Aljaerani HA, Samykano M, Kadirgama K, Noor MM, Natarajan SK
    Environ Sci Pollut Res Int, 2024 Aug;31(38):50166-50178.
    PMID: 38625473 DOI: 10.1007/s11356-024-33151-x
    Molten salts are the operational fluid for most concentrated solar power (CSP) systems, which has attracted more attention among the scientific community due to the augmentation of their properties with the doping of nanoparticles. Hexagonal boron nitride (h-BN) nanoparticles were dispersed in HITEC molten salt to create a novel nanofluid and evaluate the h-BN nanoparticles' influence on HITEC thermophysical properties. The influence of nanoparticle concentration (0.1, 0.5, and 1wt.%) of h-BN and HITEC was studied in this research. HITEC and nano-enhanced HITEC molten salt (NEHMS) were characterized using energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR). Specific heat capacity, latent heat, and melting temperature were assessed using differential scanning calorimetry (DSC). The maximum working temperature was evaluated with thermogravimetric analysis (TGA). The ideal nanoparticle concentration is 0.1 wt.% h-BN, which results in a 27% increase in heat capacity, a 72% increase in latent heat, and a 7% enhancement in thermal stability. The thermal cycling stability test proved the stability of the enhanced thermophysical properties. The material characterization revealed that the samples with improved thermophysical properties have a homogeneous dispersion of nanoparticles with minor nanoparticle agglomeration. The system advisor model (SAM) simulation comparison of the optimum sample with solar salt and HITEC salt revealed that using the optimum sample increases CSP plant efficiency by 0.4% and reduces power costs by 0.13¢/kWh.
    Matched MeSH terms: Salts/chemistry
  3. Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM
    J Biomol Struct Dyn, 2017 06;35(8):1685-1692.
    PMID: 27206405 DOI: 10.1080/07391102.2016.1191043
    Matched MeSH terms: Salts/chemistry
  4. Zghaibi N, Omar R, Kamal SMM, Biak DRA, Harun R
    Molecules, 2020 Feb 12;25(4).
    PMID: 32059440 DOI: 10.3390/molecules25040784
    The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick's Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.
    Matched MeSH terms: Salts/chemistry*
  5. Raj ST, Puspanadan S, Gan CY, Tan JS
    Int J Biol Macromol, 2024 May;267(Pt 2):131376.
    PMID: 38608981 DOI: 10.1016/j.ijbiomac.2024.131376
    Diabetes is a chronic, metabolic disease characterized by hyperglycemia resulting from either insufficient insulin production or impaired cellular response to insulin. Exopolysaccharides (EPS) produced by Lactobacillus spp. demonstrated promising therapeutic potential in terms of their anti-diabetic properties. Extraction and purification of EPS produced by Lactobacillus acidophilus and Limosilactobacillus reuteri were performed using ethanol precipitation, followed by alcohol/salt based aqueous two-phase system (ATPS). The purification process involved ethanol precipitation followed by an alcohol/salt-based ATPS. The study systematically investigated various purification parameters in ATPS, including ethanol concentration, type and concentration of ionic liquid, type and concentration of salt and pH of salt. Purified EPS contents from L. acidophilus (63.30 μg/mL) and L. reuteri (146.48 μg/mL) were obtained under optimum conditions of ATPS which consisted of 30 % (w/w) ethanol, 25 % (w/w) dipotassium hydrogen phosphate at pH 10 and 2 % (w/w) 1-butyl-3-methylimidazolium octyl sulfate. The extracted EPS content was determined using phenol sulphuric acid method. In α-amylase inhibition tests, the inhibitory rate was found to be 92.52 % (L. reuteri) and 90.64 % (L. acidophilus), while in α-glucosidase inhibition tests, the inhibitory rate was 73.58 % (L. reuteri) and 68.77 % (L. acidophilus), based on the optimized parameters selected in ATPS. These results suggest that the purified EPS derived from the postbiotics of Lactobacillus spp. hold promise as potential antidiabetic agents.
    Matched MeSH terms: Salts/chemistry
  6. Khan IA, Ahmad M, Ashfaq UA, Sultan S, Zaki MEA
    Molecules, 2021 Aug 06;26(16).
    PMID: 34443347 DOI: 10.3390/molecules26164760
    α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.
    Matched MeSH terms: Salts/chemistry
  7. Hao YS, Othman N, Zaini MAA
    Int J Biol Macromol, 2024 Oct;277(Pt 4):134353.
    PMID: 39089559 DOI: 10.1016/j.ijbiomac.2024.134353
    The work was aimed at evaluating the adsorptive properties of waste newspaper (WN) activated carbons chemically produced using sodium salts for methylene blue (MB) and congo red (CR) removal. The activated carbons, designated as AC1, AC2, AC3 and AC4 were prepared through impregnation with NaH2PO4, Na2CO3, NaCl and NaOH, respectively and activation at 500 °C for 1 h. The activated carbons were characterized for surface chemistry, thermal stability, specific area, morphology and composition. The AC1 with a surface area of 917 m2/g exhibits a greater MB capacity of 651 mg/g. Meanwhile, a greater CR capacity was recorded by AC2 at 299 mg/g. The pseudo-second order model fitted well with the kinetic data, while the equilibrium data could be described by Langmuir model. The thermodynamic parameters, i.e.., positive ΔH°, negative ΔG° and positive ΔS° suggest that the adsorption of dyes is endothermic, spontaneous and feasible at high solution temperature. To conclude, WN is a potential cellulose source for producing activated carbon, while NaH2PO4 activation could be employed to convert WN into activated carbon for effective dye wastewater treatment.
    Matched MeSH terms: Salts/chemistry
  8. Fukumoto J, Ismail NI, Kubo M, Kinoshita K, Inoue M, Yuasa K, et al.
    J. Biochem., 2013 Nov;154(5):465-73.
    PMID: 23946505 DOI: 10.1093/jb/mvt077
    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.
    Matched MeSH terms: Salts/chemistry
  9. Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NN, Ababneh B, Tousi ET
    Phys Med, 2016 Jan;32(1):36-41.
    PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003
    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
    Matched MeSH terms: Salts/chemistry*
  10. Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA
    Molecules, 2019 Aug 30;24(17).
    PMID: 31480403 DOI: 10.3390/molecules24173169
    Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
    Matched MeSH terms: Salts/chemistry
  11. Aziz SB, Brza MA, Hamsan EMADMH, Hadi JM, Kadir MFZ, Abdulwahid RT
    Molecules, 2020 Oct 01;25(19).
    PMID: 33019618 DOI: 10.3390/molecules25194503
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
    Matched MeSH terms: Salts/chemistry*
  12. Ng HS, Kee PE, Yim HS, Tan JS, Chow YH, Lan JC
    J Biosci Bioeng, 2021 May;131(5):537-542.
    PMID: 33674222 DOI: 10.1016/j.jbiosc.2021.01.004
    Gallic acid (GA) is a hydrophilic polyphenol which is noteworthy for strong antioxidant capacity. The drawbacks of conventional extraction approaches such as time-consuming and high processing cost are often viewed as a hurdle to extract GA from plant sources in industrial scale. Aqueous two-phase system (ATPS) is a separation approach which can be employed as an alternative to the conventional approaches. The partition behaviour of GA in an alcohol/salt ATPS was investigated in this study to aid the development of industrial scale ATPS to extract GA from natural sources. The separation of GA was characterized by determining the types of alcohol and salt, phase composition, sample load, pH of the system and addition of adjuvants applied in the alcohol/salt ATPS construction. The hydrophilic GA was targeted to the salt-rich phase of the alcohol/salt ATPS with a partition coefficient (KGA) of 25.00 ± 0.00. The optimum condition of ATPS for the maximum partition of GA was achieved in ATPS comprised of 24% (w/w) 1-propanol and 22% (w/w) phosphate salt at pH 8 with 5% (w/w) of 1 mg/mL sample loading and 2% (w/w) NaCl addition. The findings suggest that ATPS can be applied for separation of GA from various natural sources.
    Matched MeSH terms: Salts/chemistry*
  13. Omar NS, Kannan TP, Ismail AR, Abdullah SF, Samsudin AR, Hamid SS
    Int J Toxicol, 2011 Aug;30(4):443-51.
    PMID: 21540334 DOI: 10.1177/1091581811399474
    This study aimed to evaluate the in vitro cytotoxic effects of locally produced processed natural coral (PNC) using human osteoblasts (HOS). Cytotoxicity was not observed when HOS cells were cultured with PNC, as assessed by (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide; MTT) and Neutral Red (NR) assays at concentration up 200 mg/mL for up to 72 hours. Flow cytometry (FCM) analysis showed that PNC (200 mg/mL) did not decrease viability of HOS cells after 48 and 72 hours of treatment. In a cell attachment study, the HOS cells attached to the edge of the PNC disc, and later grew into the pores of the PNC disc. All results from these studies indicate that locally produced PNC material is noncytotoxic and favors the growth of HOS cells.
    Matched MeSH terms: Tetrazolium Salts/chemistry
  14. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Salts/chemistry
  15. Lakshmanan S, Murugesan T
    Water Sci Technol, 2017 Jul;76(1-2):87-94.
    PMID: 28708613 DOI: 10.2166/wst.2017.182
    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.
    Matched MeSH terms: Salts/chemistry
  16. Jalili M, Jinap S, Son R
    PMID: 21416415 DOI: 10.1080/19440049.2010.551300
    The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
    Matched MeSH terms: Salts/chemistry
  17. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

    Matched MeSH terms: Tetrazolium Salts/chemistry
  18. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, Williamson C
    Biochim Biophys Acta Mol Basis Dis, 2018 04;1864(4 Pt B):1345-1355.
    PMID: 29317337 DOI: 10.1016/j.bbadis.2017.12.039
    Cardiac dysfunction has an increased prevalence in diseases complicated by liver cirrhosis such as primary biliary cholangitis and primary sclerosing cholangitis. This observation has led to research into the association between abnormalities in bile acid metabolism and cardiac pathology. Approximately 50% of liver cirrhosis cases develop cirrhotic cardiomyopathy. Bile acids are directly implicated in this, causing QT interval prolongation, cardiac hypertrophy, cardiomyocyte apoptosis and abnormal haemodynamics of the heart. Elevated maternal serum bile acids in intrahepatic cholestasis of pregnancy, a disorder which causes an impaired feto-maternal bile acid gradient, have been associated with fatal fetal arrhythmias. The hydrophobicity of individual bile acids in the serum bile acid pool is of relevance, with relatively lipophilic bile acids having a more harmful effect on the heart. Ursodeoxycholic acid can reverse or protect against these detrimental cardiac effects of elevated bile acids.
    Matched MeSH terms: Bile Acids and Salts/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links