Displaying publications 1 - 20 of 151 in total

Abstract:
Sort:
  1. Chew MH, Rahman MM, Hussin S
    Pak J Med Sci, 2015;31(3):615-20.
    PMID: 26150855 DOI: 10.12669/pjms.313.6340
    Detection of different serotypes of dengue virus and provide information on origin, distribution and genotype of the virus.
    Matched MeSH terms: Serogroup
  2. Dow RA, Zhang HM
    Zootaxa, 2018 Jan 25;4375(4):567-577.
    PMID: 29690088 DOI: 10.11646/zootaxa.4375.4.6
    Yunnanosticta gen. nov. in the platystictid subfamily Sinostictinae is described from Yunnan, China. The genotype is Yunnanosticta wilsoni sp. nov., described here (holotype ♂ from Tongbiguan, Yingjiang County, Dehong Dai Jingpo Autonomous Prefecture, Yunnan, China, 23 vi 2015, leg. H.M. Zhang, to be deposited in the Natural History Museum, London). Yunnanosticta cyaneocollaris sp. nov. (holotype ♂ from Tongbiguan, Yingjiang County, Dehong Dai Jingpo Autonomous Prefecture, Yunnan, China, 23 vi 2015, leg. H.M. Zhang, to be deposited in the Natural History Museum, London) is also described.
    Matched MeSH terms: Serogroup
  3. Roslan NS, Jabeen S, Mat Isa N, Omar AR, Bejo MH, Ideris A
    Genome Announc, 2017 Nov 16;5(46).
    PMID: 29146857 DOI: 10.1128/genomeA.01272-17
    Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S Typhimurium strain UPM 260, isolated from a broiler chicken.
    Matched MeSH terms: Serogroup
  4. Ooi MK, Gan HM, Rohani A, Syed Hassan S
    Genome Announc, 2016;4(4).
    PMID: 27563048 DOI: 10.1128/genomeA.00876-16
    Here, we report the complete genome sequence of a chikungunya virus coinfection strain isolated from a dengue virus serotype 2-infected patient in Malaysia. This coinfection strain was determined to be of the Asian genotype and contains a novel insertion in the nsP3 gene.
    Matched MeSH terms: Serogroup
  5. Ezhumalai M, Muthanna A, Suhaili Z, Dzaraly ND, Amin-Nordin S, Amal MNA, et al.
    Malays J Med Sci, 2020 Feb;27(1):134-138.
    PMID: 32158353 MyJurnal DOI: 10.21315/mjms2020.27.1.14
    The aim of this study was to study the genotype of a hospital collection of Group B Streptococcus (GBS) from invasive and non-invasive sites. Fifty-one pre-characterised human of GBS were re-identified and further analysed by multilocus sequence typing (MLST) in relation to previously published serotypes. Fifteen sequence types (ST) were found with ST1 being the most predominant. ST1 was also associated with majority of the invasive isolates. The genotypic distribution patterns of GBS in this study were largely in agreement with previous reports from other countries indicating the tendency of certain genotypes to prevail in human infection settings.
    Matched MeSH terms: Serogroup
  6. Johari NA, Voon K, Toh SY, Sulaiman LH, Yap IKS, Lim PKC
    PLoS Negl Trop Dis, 2019 11;13(11):e0007889.
    PMID: 31730672 DOI: 10.1371/journal.pntd.0007889
    Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
    Matched MeSH terms: Serogroup*
  7. Yap HY, Ghazali K, Wan Mohamad Nazarie WF, Mat Isa MN, Zakaria Z, Omar AR
    Genome Announc, 2013;1(5).
    PMID: 24136854 DOI: 10.1128/genomeA.00872-13
    Pasteurella multocida serotypes B:2 and E:2 are the main causative agents of ruminant hemorrhagic septicemia in Asia and Africa, respectively. Pasteurella multocida strain PMTB was isolated from a buffalo with hemorrhagic septicemia and has been determined to be serotype B:2. Here we report the draft genome sequence of strain PMTB.
    Matched MeSH terms: Serogroup
  8. Muhamad Harish S, Sim KS, Mohd Nor F, Mat Hussin H, Hamzah WM, Najimudin N, et al.
    Genome Announc, 2015;3(6).
    PMID: 26564035 DOI: 10.1128/genomeA.01285-15
    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi B/SF/13/03/195 obtained from a typhoid carrier, who is a food handler in Pasir Mas, Kelantan.
    Matched MeSH terms: Serogroup
  9. Amran F, Mohd Khalid MK, Mohamad S, Mat Ripen A, Ahmad N, Goris MG, et al.
    Genome Announc, 2016;4(5).
    PMID: 27609924 DOI: 10.1128/genomeA.00956-16
    Leptospira interrogans serovar Bataviae was recently identified as one of the persistent Leptospira serovars in Malaysia. Here, we report the draft genome sequence of the L. interrogans serovar Bataviae strain LepIMR 22 isolated from kidney of a rodent in Johor, Malaysia.
    Matched MeSH terms: Serogroup
  10. Gan HM, Eng WWH, Barton MK, Adams LE, Samsudin NA, Bartl AJ, et al.
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839032 DOI: 10.1128/genomeA.00857-17
    We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
    Matched MeSH terms: Serogroup
  11. Alshrari AS, Hudu SA, Asdaq SMB, Ali AM, Kin CV, Omar AR, et al.
    J Infect Public Health, 2021 Nov;14(11):1603-1611.
    PMID: 34624714 DOI: 10.1016/j.jiph.2021.09.001
    BACKGROUND: Rhinoviruses (RV) are associated with the development and exacerbations of asthma and chronic obstructive pulmonary disease. They've also been linked to more severe diseases like pneumonia, acute bronchiolitis, croup, and otitis media. Because of the hypervariable sequences in the same serotypes, no effective vaccine against rhinoviruses has been developed to date. With the availability of new full-length genome sequences for all RV-A and RV-B serotyped strains, this study used bioinformatics to find a suitable RV strain with the highest similarity matrices to the other strains.

    METHODS: The full genomic sequences of all known different RV-A and -B prototypes were downloaded from the National Centre for Biotechnology Information (NCBI) and divided into minor low-density lipoprotein receptor (LDLR) and major intercellular adhesion molecule groups (ICAM). The sequences were edited using Biological Sequence Alignment Editor, v 7.2.0 (BioEdit software) to study each capsid protein (VP1, VP2, VP3, and VP4) and analyzed using the EMBL-EBI ClustalW server and the more current Clustal Omega tool for the calculation of the identities and similarities.

    RESULTS: We analyzed and predicted immunogenic motifs from capsid proteins that are conserved across distinct RV serotypes using a bioinformatics technique. The amino acid sequences of VP3 were found to be the most varied, while VP4 was the most conserved protein among all RV-A and RV-B strains. Among all strains studied, RV-74 demonstrated the highest degree of homology to other strains and could be a potential genetic source for recombinant protein production. Nine highly conserved regions with a minimum length of 9-mers were identified, which could serve as potential immune targets against rhinoviruses.

    CONCLUSION: Therefore, bioinformatics analysis conducted in the current study has paved the way for the selection of immunogenic targets. Bioinformatically, the ideal strain's capsid protein is suggested to contain the most common RVs immunogenic sites.

    Matched MeSH terms: Serogroup
  12. Muttalif AR, Presa JV, Haridy H, Gamil A, Serra LC, Cané A
    Infect Dis Ther, 2019 Dec;8(4):569-579.
    PMID: 31471813 DOI: 10.1007/s40121-019-00262-9
    INTRODUCTION: Mass gathering events involve close contact among large numbers of people in a specific location at the same time, an environment conducive to transmission of respiratory tract illnesses including invasive meningococcal disease (IMD). This report describes IMD incidence at mass gatherings over the past 10 years and discusses strategies to prevent IMD at such events.

    METHODS: A PubMed search was conducted in December 2018 using a search string intended to identify articles describing IMD at mass gatherings, including religious pilgrimages, sports events, jamborees, and refugee camps. The search was limited to articles in English published from 2008 to 2018. Articles were included if they described IMD incidence at a mass gathering event.

    RESULTS: A total of 127 articles were retrieved, of which 7 reported on IMD incidence at mass gatherings in the past 10 years. Specifically, in Saudi Arabia between 2002 and 2011, IMD occurred in 16 Hajj pilgrims and 1 Umrah pilgrim; serotypes involved were not reported. At a youth sports festival in Spain in 2008, 1 case of serogroup B IMD was reported among 1500 attendees. At the 2015 World Scout Jamboree in Japan, an outbreak of serogroup W IMD was identified in five scouts and one parent. At a refugee camp in Turkey, one case of serogroup B IMD was reported in a Syrian girl; four cases of serogroup X IMD occurred in an Italian refugee camp among refugees from Africa and Bangladesh. In 2017, a funeral in Liberia resulted in 13 identified cases of serogroup C IMD. Requiring meningococcal vaccination for mass gathering attendees and vaccinating refugees might have prevented these IMD cases.

    CONCLUSIONS: Mass gathering events increase IMD risk among attendees and their close contacts. Vaccines preventing IMD caused by serogroups ACWY and B are available and should be recommended for mass gathering attendees.

    FUNDING: Pfizer.

    Matched MeSH terms: Neisseria meningitidis, Serogroup B; Neisseria meningitidis, Serogroup C; Serogroup
  13. Muhamad Harish S, Sim KS, Najimudin N, Aziah I
    Genome Announc, 2015;3(6).
    PMID: 26564032 DOI: 10.1128/genomeA.01261-15
    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013.
    Matched MeSH terms: Serogroup
  14. Chung EL, Abdullah FF, Adamu L, Marza AD, Ibrahim HH, Zamri-Saad M, et al.
    Vet World, 2015 Jun;8(6):783-92.
    PMID: 27065648 DOI: 10.14202/vetworld.2015.783-792
    Pasteurella multocida a Gram-negative bacterium has been identified as the causative agent of many economically important diseases in a wide range of hosts. Hemorrhagic septicemia is a disease caused by P. multocida serotype B:2 and E:2. The organism causes acute, a highly fatal septicemic disease with high morbidity and mortality in cattle and more susceptible in buffaloes. Therefore, the aim of this study was to investigate the clinical signs, blood parameters, post mortem and histopathology changes caused by P. multocida Type B:2 infections initiated through the oral and subcutaneous routes.
    Matched MeSH terms: Serogroup
  15. Benacer D, Mohd Zain SN, Sim SZ, Mohd Khalid MK, Galloway RL, Souris M, et al.
    Parasit Vectors, 2016;9:117.
    PMID: 26927873 DOI: 10.1186/s13071-016-1400-1
    Leptospirosis is an emerging infectious disease of global significance, and is endemic in tropical countries, including Malaysia. Over the last decade, a dramatic increase of human cases was reported; however, information on the primary vector, the rat, and the Leptospira serovars circulating among the rat population is limited. Therefore, the present study was undertaken to isolate Leptospira and characterise the serovars circulating in the urban rat populations from selected main cities in Peninsular Malaysia.
    Matched MeSH terms: Serogroup
  16. Marza AD, Jesse FF, Ahmed IM, Teik Chung EL, Ibrahim HH, Zamri-Saad M, et al.
    Microb Pathog, 2016 Apr;93:111-9.
    PMID: 26850845 DOI: 10.1016/j.micpath.2016.01.025
    Haemorrhagic septicaemia (HS) is an acute, fatal, septicaemic disease of cattle and buffaloes caused by one of two specific serotypes of Pasteurella multocida B:2 and E:2 in Asian and African, respectively. It is well known that HS affect mainly the respiratory and digestive tracts. However, involvement of the nervous system in pathogenesis of HS has been reported in previous studies without details. In this study, nine buffalo calves of 8 months old were distributed into three groups. Animals of Group 1 and 2 were inoculated orally and subcutaneously with 10 ml of 1 × 10(12) cfu/ml of P. multocida B:2, respectively, while animals of Group 3 were inoculated orally with 10 ml of phosphate buffer saline as a control. All calves in Group 1 and Group 3 were euthanised after 504 h (21 day) post-infection, while calves in Group 2 had to euthanise after 12 h post-infection as they develop sever clinical signs of HS. Significant differences were found in Group 2 in the mean scores of clinical signs, gross and histopathological changes which mainly affect different anatomic regions of the nervous system. In addition, successful bacterial isolation of P. multocida B:2 were obtained from different sites of the nervous system. On the other hand, less sever, clinical, gross and histopathological changes were found in Group 1. These results provide for the first time strong evidence of involving of the nervous system in pathogenesis of HS, especially in the peracute stage of the disease.
    Matched MeSH terms: Serogroup
  17. Chai-Hoon, K., Jiun-Horng, S., Shiran, M.S., Son, R., Sabrina, S., Noor Zaleha, A.S., et al.
    MyJurnal
    Caenorhabditis elegans (C. elegans) have been widely used as an infection model for mammalian related pathogens with promising results. The bacterial factors required for virulence in non-mammalian host C. elegans play a role in mammalian systems. Previous reported that Salmonella found in vegetable and poultry meat could be potential health hazards to human. This study evaluated the pathogenicity of various serovars of Salmonella enterica (S. enterica) that recovered from local indigenous vegetables and poultry meat using C. elegans as a simple host model. Almost all S. enterica isolates were capable of colonizing the intestine of C. elegans, causing a significant reduction in the survival of nematodes. The colonization of Salmonella in C. elegans revealed that the ability of S. enterica in killing C. elegans correlates with its accumulation in the intestine to achieve full pathogenicity. Using this model, the virulence mechanisms of opportunistic pathogenic S. enterica were found to be not only relevant for the interactions of the bacteria with C. elegans but also with mammalian hosts including humans. Hence, C. elegans model could provide valuable insight into preliminary factors from the host that contributes to the environmental bacterial pathogenesis scenario.
    Matched MeSH terms: Serogroup
  18. Gordon Smith CE, Turner LH, Harrison JL, Broom JC
    Bull World Health Organ, 1961;24(6):807-16.
    PMID: 20604093
    In previous papers it has been demonstrated that ground-dwelling rats are the principal reservoir of leptospirosis in Malaya. The present paper considers the distribution of infection by sex and weight in the ten principal rat species. There appears to be a general tendency for females to be infected more frequently than males, but significant differences were demonstrated only in R. sabanus (more than three times as many females as males infected) and R. whiteheadi. In Malaya, where seasonal changes are minimal, weights can be used as a good index of age in rats. In rat species with a low incidence of infection the incidence appeared to rise steadily with age. In species with a medium incidence the infection rate rose at first with age, fell in the 6-8-month age-group, and then rose again. In high-incidence species the rate rose rapidly from the second month.There appear to be three types of enzootic infection; (1) intensive transmission of a single serogroup in a crowded population of rats of a single species (transmission probably being through urinary contamination of damp soil); (2) low-intensity transmission of several serogroups among ground-rats frequenting wet places (probably with urinary transmission); and (3) low-intensity transmission of several serogroups among ground-rats in dry places (the transmission may be venereal).
    Matched MeSH terms: Serogroup
  19. Bashiru G, Bahaman AR
    Indian J. Med. Res., 2018 Jan;147(1):15-22.
    PMID: 29749356 DOI: 10.4103/ijmr.IJMR_1022_16
    Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.
    Matched MeSH terms: Serogroup
  20. Arushothy R, Ahmad N, Amran F, Hashim R, Samsuddin N, Che Azih CR
    Genome Announc, 2018 Apr 19;6(16).
    PMID: 29674530 DOI: 10.1128/genomeA.00167-18
    After the introduction of the pneumococcal conjugate vaccine in Malaysia in recent years, the emergence of nonvaccine serotypes is of concern, particularly the antibiotic-resistant strains, with an increase specifically in serotype 15A. Here, we report the draft genome sequence of Streptococcus pneumoniae strain SS40_16, isolated from the blood sample of a 19-month-old female in 2016. SS40_16 is a multidrug-resistant strain with resistance to penicillin (MIC, ≥2 µg/ml), tetracycline, and trimethoprim-sulfamethoxazole. The strain belongs to serotype 15A and sequence type 1591 (ST1591).
    Matched MeSH terms: Serogroup
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links