Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Sulaiman AZ, Ajit A, Chisti Y
    Biotechnol Prog, 2013 Nov-Dec;29(6):1448-57.
    PMID: 23926080 DOI: 10.1002/btpr.1786
    A recombinant Trichoderma reesei cellulase was used for the ultrasound-mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4-11.8 W cm(-2) sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis-Menten kinetics. The Michaelis-Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm(-2) . Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm(-2) power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  2. Ahmad NH, Isa MIN
    Carbohydr Polym, 2016 Feb 10;137:426-432.
    PMID: 26686147 DOI: 10.1016/j.carbpol.2015.10.092
    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  3. Nguan H, Ahmadi S, Hashim R
    J Mol Model, 2012 Dec;18(12):5041-50.
    PMID: 22752540 DOI: 10.1007/s00894-012-1497-x
    A theoretical study of a series of five glucose based glycolipid crown ethers and their complexes with Na(+) and K(+) was performed using the density functional theory with B3LYP/6-31 G* to obtain the optimized geometrical structures and electronic properties. The local nucleophilicity of the five molecules was investigated using Fukui function, while the global nucleophilicity was calculated from the ionization potential and electron affinity. The structures and coordination of the complexes were studied to identify the best match of the glycolipid crown ethers with cations. In general, it was found that the oxygen atoms pairs O2 and O3 (or O4 and O6) on the sugar ring are constrained from moving toward the cation, which results in a weaker O-cation coordination strength for the oxygen pair compared to the other oxygen atoms in the crown ether ring. The thermodynamic properties of the binding of the complexes and the exchange reaction in gas phase were evaluated. The cation selectivity pattern among the five molecules was in good agreement with the experiment.
    Matched MeSH terms: Sodium/chemistry*
  4. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  5. Chan YW, Acquah C, Obeng EM, Dullah EC, Jeevanandam J, Ongkudon CM
    Biochimie, 2019 Feb;157:204-212.
    PMID: 30513369 DOI: 10.1016/j.biochi.2018.11.019
    Biocarriers are pivotal in enhancing the reusability of biocatalyst that would otherwise be less economical for industrial application. Ever since the induction of enzymatic technology, varied materials have been assessed for their biocompatibility with enzymes of distinct functionalities. Herein, cellulase was immobilized onto polymethacrylate particles (ICP) as the biocarrier grafted with ethylenediamine (EDA) and glutaraldehyde (GA). Carboxymethyl cellulose (CMC) was used as a model substrate for activity assay. Enzyme immobilization loading was determined by quantifying the dry weight differential of ICP (pre-& post-immobilization). Cellulase was successfully demonstrated to be anchored upon ICP and validated by FTIR spectra analysis. The optimal condition for cellulase immobilization was determined to be pH 6 at 20 °C. The maximum CMCase activity was achieved at pH 5 and 50 °C. Residual activity of ∼50% was retained after three iterations and dipped to ∼18% on following cycle. Also, ICP displayed superior pH adaptability as compared to free cellulase. The specific activity of ICP was 65.14 ± 1.11% relative to similar amount of free cellulase.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  6. Fu J, Yap JX, Leo CP, Chang CK
    Int J Biol Macromol, 2023 Apr 15;234:123642.
    PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642
    Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  7. Vijayasree VP, Abdul Manan NS
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124723.
    PMID: 37148927 DOI: 10.1016/j.ijbiomac.2023.124723
    In this study, magnetite carboxymethylcellulose (CMC@Fe3O4) composite as magnetic biological molecules were synthetized for the use as adsorbent to remove four types of cationic dyes, namely Methylene Blue, Rhodamine B, Malachite Green, and Methyl Violet from aqueous solution. The characteristic of the adsorbent was achieved by Fourier Transform Infrared Spectroscopy, Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction, Vibrating Sample Magnetometer and Thermal Gravimetric Analysis techniques. Besides, essential influencing parameters of dye adsorption; the solution pH, solution temperature, contact time, adsorbent concentration and initial dye dosage were studied. FESEM analysis showed the magnetic Fe3O4-TB, Fe3O4@SiO2, Fe3O4@SiO2-NH2 and CMC@Fe3O4 composites were in spherical shape, with average size of 43.0 nm, 92.5 nm, 134.0 nm and 207.5 nm, respectively. On the saturation magnetization (Ms), the results obtained were 55.931 emu/g, 34.557 emu/g, 33.236 emu/g and 11.884 emu/g. From the sorption modelling of Isotherms, Kinetics, and Thermodynamics, the adsorption capacity of dyes is (MB = 103.33 mg/g), (RB = 109.60 mg/g), (MG = 100.08 mg/g) and (MV = 107.78 mg/g). With all the adsorption processes exhibited as exothermic reactions. The regeneration and reusability of the synthetized biological molecules-based adsorbent was also assessed.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  8. Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N
    J Microencapsul, 2012;29(4):368-79.
    PMID: 22309480 DOI: 10.3109/02652048.2011.651501
    We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  9. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Sodium/chemistry
  10. Sabbagh F, Muhamad II, Nazari Z, Mobini P, Taraghdari SB
    Mater Sci Eng C Mater Biol Appl, 2018 Nov 01;92:20-25.
    PMID: 30184743 DOI: 10.1016/j.msec.2018.06.022
    This study conducted on the structure of modified acrylamide-based hydrogel by synthesizing the nano composites. The hydrogels employed in this study were provided through a combination of acrylamide monomers, sodium carboxymethyl cellulose (NaCMC) and magnesium oxide (MgO) nanoparticles by crosslinking polymerization. N,N,N',N'-tetramethylethylenediamine and ammonium persulfate as the initiator was applied in the structure of the polymer. Findings of the study considered the nano composites consisting of MgO have the highest swelling ratio compared to pure Aam hydrogels. Thus, MgO is an appropriate nanoparticle to be used in the nano composites. Response surface methodology (RSM) based on a central composite design (CCD Design) was applied to optimize the preparation variables of a hydrogel consisted of MgO, NaCMC. With the swelling ratio for acrylamide-based hydrogel as the response, the effects of two variables, i.e. MgO and NaCMC were investigated. The effects of pH, temperature, MgO, and NaCMC on the drug release were investigated using the CCD design. The predicted appropriate drug release conditions for the hydrogel at the highest rate of temperature (37.50 °C) and pH: 4.10, is at its highest value, while the lower drug release is at temperature 38 °C and pH 3.50. With the desired value of MgO (0.01 g) and amount of NaCMC (0.1 g).
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  11. Salleh KM, Zakaria S, Sajab MS, Gan S, Kaco H
    Int J Biol Macromol, 2019 Jun 15;131:50-59.
    PMID: 30844455 DOI: 10.1016/j.ijbiomac.2019.03.028
    A green regenerated superabsorbent hydrogel was fabricated with mixtures of dissolved oil palm empty fruit bunch (EFB) cellulose and sodium carboxymethylcellulose (NaCMC) in NaOH/urea system. The formation of hydrogel was aided with epichlorohydrin (ECH) as a crosslinker. The resultant regenerated hydrogel was able to swell >80,000% depending on the NaCMC concentrations. The hydrogel absorbed water rapidly upon exposure to water up to 48 h and gradually declined after 72 h. The crosslinked of covalent bond of COC between dissolved EFB cellulose (EFBC) with NaCMC was confirmed with Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Crystallinity and thermal stability of the hydrogel samples were depended on the concentrations of NaCMC, crosslinking, and swelling process. The strength and stability of crosslinked network was studied by examining the gel fraction of hydrogel. This study explored the swelling ability and probable influenced factors towards physical and chemical properties of hydrogel.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  12. Salleh KM, Zakaria S, Gan S, Baharin KW, Ibrahim NA, Zamzamin R
    Int J Biol Macromol, 2020 Apr 01;148:11-19.
    PMID: 31893531 DOI: 10.1016/j.ijbiomac.2019.12.240
    Dissolved oil palm empty fruit bunch cellulose (EFBC) and sodium carboxymethylcellulose (NaCMC) were chemically crosslinked with epichlorohydrin (ECH) to generate designated hydrogel. After swelling process in distilled water, the swollen hydrogel was frozen and freeze-dried to form cryogel. The swelling phenomenon of hydrogel during the absorption process gave substantial effects on thinning of crosslinked network wall, pore size and volume, steadiness of cryogel skeletal structure, and re-swelling of cryogel. The swelling effects on hydrogel were confirmed via microscopic study using variable pressure scanning electron microscope (VPSEM). From the retrieved VPSEM images, nano-thin crosslinked network wall of 24.31 ± 1.97 nm and interconnected pores were observed. As a result, the amount of water, the swelling degree, and the freeze-drying process indirectly affected the VPSEM images that indicated pore size and volume, formation of interconnected pores, and re-swelling of cryogel. This study determined the intertwined factors that affected both hydrogel and cryogel properties by investigating the swelling phenomenon and its ensuing effects.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  13. Ng SF, Lew PC, Sin YB
    Drug Dev Ind Pharm, 2014 Nov;40(11):1538-46.
    PMID: 24025072 DOI: 10.3109/03639045.2013.836214
    Topical emollients are known to provide symptomatic relief for atopic dermatitis. In hospitals, wet-wrap therapy has been shown to benefit children with moderate-to-severe atopic dermatitis (AD), but the application of wet-wraps is tedious and time-consuming. Topical emollients have low residence time and often dry out easily. The aim of this work was to develop a hydrogel-gauze dressing that is not only easy to apply but also rehydrates and traps moisture to provide longer relief for AD patients. In this study, a prototype hydrogel-gauze dressing was developed with varying ratios of sodium carboxymethylcellulose (NaCMC) and propylene glycol. The hydrogel-gauze dressings were assessed based on the moisture vapor transmission rate, moisture absorption, mechanical properties and storage stability over three months. Then, the efficacy of the hydrogel-gauze dressing was compared to topical emollients using transgenic NC/Nga mice with AD-like lesions. The NaCMC hydrogel-gauze dressings significantly lowered transepidermal water loss, and the animals displayed a faster recovery, which indicates that hydrogel-gauze dressings can trap moisture more effectively and accelerate AD healing. Hence, we propose that hydrogel-gauze dressings can potentially become an alternative to wet-wrap therapy due to the ease of application and the higher efficacy compared to topical products.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  14. Wong TW, Ramli NA
    Carbohydr Polym, 2014 Nov 4;112:367-75.
    PMID: 25129756 DOI: 10.1016/j.carbpol.2014.06.002
    Infection control and wound healing profiles of sodium carboxymethylcellulose (SCMC) films were investigated as a function of their anti-bacterial action, physical structures, polymer molecular weights and carboxymethyl substitution degrees. The films were prepared with in vitro polymer/film and in vivo microbe-colonized wound healing/systemic infection profiles examined. Adhesive high carboxymethyl substituted SCMC films aided healing via attaching to microbes and removing them from wound. Pseudomonas aeruginosa was removed via encapsulating in gelling low molecular weight SCMC film, whereas Staphylococcus aureus was trapped in tight folds of high molecular weight SCMC film. Incomplete microbe removal from wound did not necessary translate to inability to heal as microbe remnant at wound induced fibroblast migration and aided tissue reconstruction. Using no film nonetheless will cause systemic blood infection. SCMC films negate infection and promote wound healing via specific polymer-microbe adhesion, and removal of S. aureus and P. aeruginosa requires films of different polymer characteristics.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  15. Hani AF, Kumar D, Malik AS, Razak R
    Magn Reson Imaging, 2013 Sep;31(7):1059-67.
    PMID: 23731535 DOI: 10.1016/j.mri.2013.01.007
    Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~225±19mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage.
    Matched MeSH terms: Sodium/chemistry*
  16. Peh KK, Wong CF
    J Pharm Pharm Sci, 1999 May-Aug;2(2):53-61.
    PMID: 10952770
    To investigate the suitability of an SCMC (sodium carboxymethyl cellulose/polyethylene glycol 400/carbopol 934P) and an HPMC (hydroxypropylmethyl cellulose/polyethylene glycol 400/carbopol 934P) films as drug vehicle for buccal delivery.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  17. Ramli NA, Wong TW
    Int J Pharm, 2011 Jan 17;403(1-2):73-82.
    PMID: 20974238 DOI: 10.1016/j.ijpharm.2010.10.023
    This study investigated critical physicochemical attributes of low (LV), medium (MV) and high molecular weight (HV) sodium carboxymethylcellulose (SCMC) scaffolds in partial thickness wound healing. SCMC scaffolds were prepared by solvent-evaporation technique. Their in vitro erosion, moisture affinity, morphology, tensile strength, polymer molecular weight and carboxymethyl substitution, and in vivo wound healing profiles were determined. Inferring from rat wound size, re-epithelialization and histological profiles, wound healing progressed with HV scaffold>LV-MV scaffold>control with no scaffold. The transepidermal water loss (TEWL) from wound of rats treated by control>HV scaffold>LV-MV scaffold. HV scaffold had the highest tensile strength of all matrices and was resistant to erosion in simulated wound fluid. In spite of constituting small nanopores, it afforded a substantial TEWL than MV and LV scaffolds from wound across an intact matrix through its low moisture affinity characteristics. The HV scaffold can protect moisture loss without its excessive accumulation at wound bed which hindered re-epithelialization process. Regulation of transepidermal water movement and wound healing by scaffolds was governed by SCMC molecular weight instead of its carboxymethyl substitution degree or matrix pore size distribution, with large molecular weight HV preferred over lower molecular weight samples.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  18. Ng SF, Jumaat N
    Eur J Pharm Sci, 2014 Jan 23;51:173-9.
    PMID: 24076463 DOI: 10.1016/j.ejps.2013.09.015
    Lyophilised wafers have been shown to have potential as a modern dressing for mucosal wound healing. The wafer absorbs wound exudates and transforms into a gel, thus providing a moist environment which is essential for wound healing. The objective of this study was to develop a carboxymethyl cellulose wafer containing antimicrobials to promote wound healing and treat wound infection. The pre-formulation studies began with four polymers, sodium carboxymethyl cellulose (NaCMC), methylcellulose (MC), sodium alginate and xanthan gum, but only NaCMC and MC were chosen for further investigation. The wafers were characterised by physical assessments, solvent loss, microscopic examination, swelling and hydration properties, drug content uniformity, drug release and efficacy of antimicrobials. Three of the antimicrobials, neomycin trisulphate salt hydrate, sulphacetamide sodium and silver nitrate, were selected as model drugs. Among the formulations, NaCMC wafer containing neomycin trisulphate exhibited the most desirable wound dressing characteristics (i.e., flexibility, sponginess, uniform wafer texture, high content drug uniformity) with the highest in vitro drug release and the greatest inhibition against both Gram positive and Gram negative bacteria. In conclusion, we successfully developed a NaCMC lyophilised wafer containing antimicrobials, and this formulation has potential for use in mucosal wounds infected with bacteria.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry*
  19. Eid EE, Abdul AB, Rasedee A, Suliman FE, Sukari MA, Fatah SA
    J Mass Spectrom, 2011 Aug;46(8):772-81.
    PMID: 21834015 DOI: 10.1002/jms.1942
    A rapid, sensitive, specific and selective LC-MS/MS method for the determination of zerumbone (ZER) in human plasma using 2,4-diamino-6-(4-methoxyphenyl)-1,3,5-triazine (DMTZ) as an internal standard (IS) has been developed and validated. ZER was chromatographed on C8 column using a mobile phase of acetonitrile/water (80:20, v/v) at a flow rate of 0.25 ml min(-1) . Quantitation was achieved using ESI+ interface, employing multiple reaction monitoring (MRM) mode at m/z 219 > 81 and 218 > 134 for ZER and IS, respectively. The calibration standards were linear over a range of 5-3000 ng ml(-1) (r(2)=0.9994) with an LLOQ of 5 ng ml(-1) (RSD %; 11.4% and bias%; 9.5%). Intra- and inter-day precision of ZER assay ranged from 0.18 to 3.56% with accuracy (bias) that varied between -5.09 and 4.3%, demonstrating good precision and accuracy. Recoveries of ZER and the IS from human plasma were above 85%. The developed method was validated for the determination of ZER in rat plasma. Linearity, stability of ZER and the ME on rat plasma were discussed. The applicability of the developed method was demonstrated by measuring ZER in rat plasma samples following intravenous and intraperitoneal administration of ZER prepared in hydroxypropyl-β-cyclodextrin (HPβCD) and sodium carboxymethyl cellulose (CMC), respectively, in 20 mg kg(-1) and this study indicated a clear significant difference (p<0.05) in pharmacokinetic parameters of ZER in ZER/HPβCD complex compared with ZER in CMC preparation.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
  20. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Carboxymethylcellulose Sodium/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links