PURPOSE: The present study investigates the stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (GAGO) on several MRSA strains.
METHODS: The stability of a synthesized and characterized GAGO was monitored in different physiological media. The toxicity profile of GAGO was evaluated in 3T3 murine fibroblast cells and the embryonic zebrafish model. The antibacterial activity of GAGO against MRSA, methicillin-susceptible S. aureus (MSSA), and community-acquired MRSA; with or without Panton-valentine leucocidin gene (MRSA-pvl+ and MRSA-pvl-) was investigated through disk diffusion, CFU counting method, time-kill experiment, and high-resolution transmission electron microscopy (HRTEM) observation.
RESULTS: A stable GAGO nanocomposite has shown an improved toxicity profile in 3T3 murine fibroblast cells and zebrafish embryos, besides exhibiting normal ROS levels than graphene oxide (GO) and GA (gallic acid). The nanocomposite inhibited the growth of all bacterial strains employed. The effectiveness of the GAGO nanocomposite was comparable to cefoxitin (CFX), at ≥150 µg/mL in MRSA and MSSA. GAGO exhibited a significantly delayed response towards MRSA-pvl+ and MRSA-pvl-, with increased inhibition following 8 to 24 h of exposure, while comparable activity to native GA was only achieved at 24 h. Meanwhile, for MRSA and MSSA, GAGO had a comparable activity with native GA and GO as early as 2 h of exposure. HRTEM observation further reveals that GAGO-exposed cells were membrane compromised.
CONCLUSION: In summary, the present study indicates the antibacterial potential of GAGO against MRSA strains, but further study is warranted to understand the mechanism of action of GAGO and its resistance in MRSA strains.
RESULTS: Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses.
CONCLUSIONS: The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA.