MATERIALS AND METHODS: Twelve varieties of commercial wound coverings based on biopolymers of natural and synthetic origin, a biological preparation Staphylophag produced by scientific-industrial association Microgen (Russia), registration certificate P N001973/01, and the S. aureus 3196 test strain (GenBank JARQZO000000000) isolated from a patient with a burn wound have been used in our work. The ability of commercial biological wound coatings to absorb solutions was examined by immersing them in a physiological solution (pH 7.0-7.2) followed by weighing. The lytic activity of three bacteriophage series against the test strain was studied using the Appelman method and a spot test. The lytic activity of the bacteriophage in the wound samples was studied within 7 days after its absorption by the wound coatings.
RESULTS: The greatest volume of fluid was absorbed by the LycoSorb, NEOFIX FibroSorb Ag, Biatravm, and Chitocol-S wound coatings. All bacteriophage series have been found to have a high lytic activity against the test strain. It has also been shown that Chitocol-S, Collachit-FA, Algipran, and Aquacel Ag Extra possessed their own inherent antibacterial activity under in vitro conditions stable for 7 days; moreover, the lysis zones of the test strain increased after their saturation with bacteriophage. On day 0, a high level of bacteriophage lytic activity with the maximum size of the test strain lysis zones from 49 to 59 mm have been found to remain in all samples of the wound coverings. The bacteriophage activity persisted for 1 day in the samples of Hydrofilm, Polypran, and NEOFIX FibroCold Ag coatings, up to 4 days in Algipran, Nano-Aseptica, and Biatravm coatings; and for 7 days in the Chitocol-S, Collachit-FA, Opsite Post-Op Visible, NEOFIX FibroSorb Ag, Aquacel Ag Extra, and LycoSorb samples.
CONCLUSION: Modern commercial wound dressings based on chitosan-collagen complex (Chitocol-S, Collachit-FA), polyurethane (Opsite Post-Op Visible, LycoSorb, NEOFIX FibroSorb Ag), and Hydrofiber (Aquacel Ag Extra) have a sufficient level of bacteriophage solution absorption, provide a stable preservation of the bacteriophage lytic activity under in vitro conditions up to 7 days. Thus, the in vitro studies prove the possibility of their use as a carrier matrix for bacteriophages.
METHODS: The antibacterial activity of four NSAIDs (aspirin, ibuprofen, diclofenac and mefenamic acid) were tested against ten pathogenic bacterial strains using the microdilution broth method. The interaction between NSAIDs and antibiotics (cefuroxime/chloramphenicol) was estimated by calculating the fractional inhibitory concentration (FICI) of the combination.
RESULTS: Aspirin, ibuprofen and diclofenac exhibited antibacterial activity against the selected pathogenic bacteria. The interaction between ibuprofen/aspirin with cefuroxime was demonstrated to be synergistic against methicillin-sensitive S. aureus (MSSA) and the MRSA reference strain, whereas for MRSA clinical strains additive effects were observed for both NSAIDs and cefuroxime combinations. The combination of chloramphenicol with ibuprofen/aspirin was synergistic against all of the tested MRSA strains and displayed an additive effect against MSSA. A 4-8192-fold reduction in the cefuroxime minimum inhibitory concentration (MIC) and a 4-64-fold reduction of the chloramphenicol MIC were documented.
CONCLUSIONS: Overall, the NSAIDs ibuprofen and aspirin showed antibacterial activity against strains of S. aureus. Although individually less potent than common antibiotics, these NSAIDs are synergistic in action with cefuroxime and chloramphenicol and could potentially be used as adjuvants in combating multidrug-resistant MRSA.
DATA SOURCES: A PubMed search was completed in Clinical Queries using the key terms "Staphylococcal scalded skin syndrome" and "Ritter disease".
RESULTS: SSSS is caused by toxigenic strains of Staphylococcus aureus. Hydrolysis of the amino-terminal extracellular domain of desmoglein 1 by staphylococcal exfoliative toxins results in disruption of keratinocytes adhesion and cleavage within the stratum granulosum which leads to bulla formation. The diagnosis is mainly clinical, based on the findings of tender erythroderma, bullae, and desquamation with a scalded appearance especially in friction zones, periorificial scabs/crusting, positive Nikolsky sign, and absence of mucosal involvement. Prompt empiric treatment with intravenous anti-staphylococcal antibiotic such as nafcillin, oxacillin, or flucloxacillin is essential until cultures are available to guide therapy. Clarithromycin or cefuroxime may be used should the patient have penicillin allergy. If the patient is not improving, critically ill, or in communities where the prevalence of methicillin-resistant S. aureus is high, vancomycin should be used.
CONCLUSION: A high index of suspicion is essential for an accurate diagnosis to be made and treatment promptly initiated.