Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Basri M, Th'ng BL, Razak CN, Salleh AB
    Ann. N. Y. Acad. Sci., 1998 Dec 13;864:192-7.
    PMID: 9928091
    Matched MeSH terms: Substrate Specificity
  2. Onsa GH, bin Saari N, Selamat J, Bakar J
    J. Agric. Food Chem., 2000 Oct;48(10):5041-5.
    PMID: 11052775
    Latent polyphenol oxidase (LPPO), an enzyme responsible for the browning reaction of sago starches during processing and storage, was investigated. The enzyme was effectively extracted and partially purified from the pith using combinations of nonionic detergents. With Triton X-114 and a temperature-induced phase partitioning method, the enzyme showed a recovery of 70% and purification of 4. 1-fold. Native PAGE analysis of the partially purified LPPO revealed three activity bands when stained with catechol and two bands with pyrogallol. The molecular masses of the enzymes were estimated by SDS-PAGE to be 37, 45, and 53 kDa. The enzyme showed optimum pH values of 4.5 with 4-methylcatechol as a substrate and 7.5 with pyrogallol. The LPPO was highly reactive toward diphenols and triphenols. The activity of the enzyme was greatly enhanced in the presence of trypsin, SDS, ethanol, and linoleic acid.
    Matched MeSH terms: Substrate Specificity
  3. Alshiyab H, Kalil MS, Hamid AA, Yusoff WM
    Pak. J. Biol. Sci., 2008 Sep 1;11(17):2073-82.
    PMID: 19266920
    The aim of this study was to investigate the influence of some environmental factors on bacterial metabolism. Fermentative hydrogen production by C. acetobutylicum, using glucose as the substrate. The effect of initial pH (4-8), inoculum size (1-20% (v/v)) and glucose concentration (1-30 g L(-1)) on hydrogen production were studied. The optimum cultivation temperature for hydrogen production was at 30 degrees C. The results show that substrate concentration and inoculum size resulted in hydrogen yield (Y(P/S)) of 391 mL g(-1) glucose utilized with maximum hydrogen productivity of 77.5 mL/L/h. Higher substrate concentration or inoculum size adversely affects hydrogen production, which decreases hydrogen yield by 15% to 334 mL g(-1) glucose utilized when 30% (v/v) inoculum size was used. The use of 30 g L(-1) substrate concentration resulted in a 75% decrease to 97 mL g(-1) glucose supplied. Concluded that proper Xo/So enhanced the hydrogen production.
    Matched MeSH terms: Substrate Specificity
  4. Tan NH, Tan CS
    Toxicon, 1988;26(5):505-8.
    PMID: 3188057
    Trimeresurus purpureomaculatus venom acetylcholinesterase has been partially purified by Sephadex G-200 gel filtration chromatography and DEAE Sephacel ion exchange chromatography. The enzyme has a mol. wt of 58,600. It was strongly inhibited by physostigmine salicylate and edrophonium chloride and exhibited substrate inhibition at high substrate concentration. The content of acetylcholinesterase in Trimeresurus purpureomaculatus venom was estimated to be much less than 0.3%.
    Matched MeSH terms: Substrate Specificity
  5. Mohamed RA, Salleh AB, Leow TC, Yahaya NM, Abdul Rahman MB
    Protein Eng. Des. Sel., 2018 06 01;31(6):221-229.
    PMID: 30239965 DOI: 10.1093/protein/gzy023
    A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.
    Matched MeSH terms: Substrate Specificity/genetics
  6. Al-Amrani WA, Lim PE, Seng CE, Wan Ngah WS
    Bioresour. Technol., 2013 Sep;143:584-91.
    PMID: 23835263 DOI: 10.1016/j.biortech.2013.06.055
    Bioregeneration of mono-amine modified silica gel (MAMS) adsorbent loaded with Acid Orange 7 (AO7), Acid Yellow 9 (AY9) and Acid Red 14 (AR14), respectively, was investigated under two different operational conditions, namely absence/presence of sucrose/bacto-peptone as the co-substrate and different biomass acclimation concentrations. The results revealed that the AY9- and AR14-loaded MAMS adsorbents could almost be completely bioregenerated but only in the presence of co-substrate whereas the bioregeneration of AO7-loaded MAMS could achieve up to 71% in the absence of the co-substrate. These differences could be related to the structural properties of the investigated azo dyes. In addition, the results showed that the bioregeneration duration of AO7-loaded MAMS could be progressively shortened by using biomass acclimated to increasingly higher AO7 concentration. However, the bioregeneration efficiencies were found to be relatively unchanged under different biomass acclimation concentrations.
    Matched MeSH terms: Substrate Specificity
  7. Muskhazli Mustafa, Nor Azwady Abd. Aziz, Anida Kaimi, Nurul Shafiza Noor, Salifah Hasanah Ahmad Bedawi, Nalisha Ithnin
    MyJurnal
    The β-1,6-glucanases are ubiquitous enzymes which appear to be implicated in the morphogenesis and have the ability to become virulence factor in plant-fungal symbiotic interaction. To our knowledge, no report on ß-1,6-glucanases purification from Trichoderma longibrachiatum has been made, although it has been proven to have a significant effect as a biocontrol agent for several diseases. Therefore, the aim of this study was to purify β-1,6- glucanase from T. longibrachiatum T28, with an assessment on the physicochemical properties and substrate specificity. β-1,3-glucanase enzyme, from the culture filtrate of T. longibrachiatum T28, was successively purified through precipitation with 80% acetone, followed by anionexchange chromatography on Neobar AQ and chromatofocusing on a Mono P HR 5/20 column. (One β-1,6-glucanase) band at 42kDa in size was purified, as shown by the SDS-PAGE. The physicochemical evaluation showed an optimum pH of 5 and optimum temperature of 50°C for enzyme activity with an ability to maintain 100% enzyme stability. Enzyme activity was slightly reduced by 10-20% in the presence of 20 mM of Zn2+, Ca2+, Co2+, Mg2+, Cu2+, Mn2+ and Fe2+. The highest β-1,6-glucanase hydrolysis activity was obtained on pustulan due to the similarity of β-glucosidic bonds followed by laminarin, glucan and cellulose. Therefore, it can be concluded that the characterization of ß-1,6-glucanase secreted by T. longibrachiatum in term of molecular weight, responsed to selected physicochemical factors and the substrate specificity are approximately identical to other Trichoderma sp.
    Matched MeSH terms: Substrate Specificity
  8. Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM
    Int. J. Biol. Macromol., 2017 Nov;104(Pt A):322-332.
    PMID: 28610926 DOI: 10.1016/j.ijbiomac.2017.06.054
    Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.
    Matched MeSH terms: Substrate Specificity
  9. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al.
    Biomed Res Int, 2017;2017:1272193.
    PMID: 28280725 DOI: 10.1155/2017/1272193
    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
    Matched MeSH terms: Substrate Specificity
  10. Teh AH, Chiam NC, Furusawa G, Sudesh K
    Int. J. Biol. Macromol., 2018 Nov;119:438-445.
    PMID: 30048726 DOI: 10.1016/j.ijbiomac.2018.07.147
    Polyhydroxyalkanoate (PHA) synthase, PhaC, is a key enzyme in the biosynthesis of PHA, a type of bioplastics with huge potential to replace petroleum-based plastics. While two structures have been determined, the exact mechanism remains unclear partly due to the absence of a tunnel for product passage. A model of the class I PhaC from Aquitalea sp. USM4, characterised with Km of 394 μM and kcat of 476 s-1 on 3-(R)-hydroxybutyryl-CoA, revealed a three-branched channel at the dimeric interface. Two of them are opened to the solvent and are expected to serve as the putative routes for substrate entrance and product exit, while the third is elongated in the class II PhaC1 model from Pseudomonas aeruginosa, indicating a role in accommodating the hydroxyalkanoate (HA) moiety of a HA-CoA substrate. Docking of the two tetrahedral intermediates, formed during the transfer of the growing PHA chain from the catalytic Cys to a new molecule of substrate and back to Cys, suggests a common elongation mechanism requiring the HA moiety of the ligand to rotate ~180°. Substrate specificity is determined in part by a bulky Phe/Tyr/Trp residue in the third branch in class I, which is conserved as Ala in class II to create room for longer substrates.
    Matched MeSH terms: Substrate Specificity
  11. Mohd Khalizan Sabullah, Mohd Ezuan Khayat
    MyJurnal
    In this study, the substrate specificity and the inhibition kinetics of various types of insecticides to the acetylcholinesterase (AChE) from a local fish; Puntius schwanenfeldii were investigated. The substrate specificity determination was done using three thiocholine substrates, which were ATC, PTC and BTC. The results showed that he partially purified cholinesterase from Puntius schwanenfeldii that preferred ATC is a true AChE. The Km and Vmax values of AChE for these substrates were 16.61 mmol and 286.5 U/mg for ATC, 19.92 mmol and 245.3 U/mg for PTC, and 48.64 mmol and 219.6 U/mg for BTC, respectively. The IC50 values for the carbamates bendiocarb, carbaryl, propoxur, carbofuran and methomyl were 0.838, 7.045, 29.441, 1.411 and 8.335 mg/L, respectively, which were comparable to the IC50 values for carbamates from several AChE from fish.
    Matched MeSH terms: Substrate Specificity
  12. Sanmugavelan R, Teoh TC, Roslan N, Mohamed Z
    Turk. J. Biol., 2018;42(3):213-223.
    PMID: 30814883 DOI: 10.3906/biy-1710-107
    In this study, transformation of BrCHS var 2 into B. rotunda cell suspension culture, followed by chalcone synthase enzymatic assay and HPLC analysis was conducted to investigate whether the substrate specificity for BrCHS var 2 is either cinnamoyl-CoA or p-coumaroyl-CoA. The HPLC profile showed an increase in the amount of pinocembrin chalcone when cinnamoyl-CoA and malonyl-CoA were added but not p-coumaroyl-CoA. Molecular docking was performed to explore the binding of cinnamoyl-CoA and p-coumaroyl-CoA to BrCHS var 2 receptor and the docking results showed that cinnamoyl-CoA formed numerous hydrogen bonds and more negative docked energy than p-coumaroyl-CoA. Cinnamoyl-CoA showed good interactions with Cys 164 to initiate the subsequent formation of pinocembrin chalcone, whereas the hydroxyl group of p-coumaroyl-CoA formed an unfavorable interaction with Gln 161 that caused steric hindrance to subsequent formation of naringenin chalcone. Docked conformation analysis results also showed that malonyl-CoA formed hydrogen bonding with Cys 164, His 303, and Asn 336 residues in BrCHS var 2. The results show that cinnamoyl-CoA is the preferred substrate for BrCHS var 2.
    Matched MeSH terms: Substrate Specificity
  13. Tan NH, Fung SY, Yap YH
    PMID: 21983189 DOI: 10.1016/j.cbpb.2011.09.009
    A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen>dog fibrinogen≈human fibrinogen>goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Substrate Specificity/drug effects
  14. Abdullah SN, Farmer EA, Spargo L, Logan R, Gully N
    Anaerobe, 2013 Oct;23:102-8.
    PMID: 23856045 DOI: 10.1016/j.anaerobe.2013.07.001
    While a group of oral commensals have been implicated in the aetiology of chronic periodontitis; the asaccharolytic Gram negative anaerobe Porphyromonas gingivalis is most commonly reported to be associated with severe forms of the disease. Although a variety of human tissues can produce a number of peptidylarginine deiminase (PAD), enzymes that convert peptide bound arginine residues to citrulline, P. gingivalis is one of the few prokaryotes known to express PAD. Protein and peptide citrullination are important in the development of rheumatoid arthritis and in recent years a number of authors have suggested a possible link between periodontitis and rheumatoid arthritis (RA). Indeed, some have linked P. gingivalis directly to RA via the action of PAD. Accordingly, the prime purpose of this study was to further characterise PAD in P. gingivalis cells particular emphasis on substrate specificity, using arginine containing peptides and RA relevant proteins.
    Matched MeSH terms: Substrate Specificity
  15. Alam MZ, Muyibi SA, Wahid R
    Bioresour. Technol., 2008 Jul;99(11):4709-16.
    PMID: 17981027
    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.
    Matched MeSH terms: Substrate Specificity
  16. Wong PF, Abubakar S
    J Trace Elem Med Biol, 2008;22(3):242-7.
    PMID: 18755400 DOI: 10.1016/j.jtemb.2008.03.008
    Prostate cancer is an age-related disease that is linked to the inability of prostate cells to accumulate zinc following transformation. It is shown in the present study that the basal percentage of normal prostate cells expressing senescence-associated beta-galactosidase (SA-beta-gal) is higher than that of the cancer cells. In the presence of high zinc in the cell culture medium, the percentage of normal prostate cells expressing the SA-beta-gal increased but not that of the cancer cells. Increased intracellular zinc occurs in the prostate cancer cells treated with supraphysiologic concentration of zinc but it does not induce senescence or decrease the telomerase activities in these cells. Senescence, however, occurred when the prostate cancer cells DNA is damaged by irradiation. These findings suggest that prostate cancer cells are insensitive to the senescence-inducing effects of zinc but the cancer cells retain the capacity to undergo senescence through other pathways.
    Matched MeSH terms: Substrate Specificity
  17. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal. Biochem., 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
    Matched MeSH terms: Substrate Specificity
  18. Balasubramaniam S, Lee HC, Lazan H, Othman R, Ali ZM
    Phytochemistry, 2005 Jan;66(2):153-63.
    PMID: 15652572
    beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.
    Matched MeSH terms: Substrate Specificity
  19. Monajemi H, Daud MN, Mohd Zain S, Wan Abdullah WA
    Biochem. Cell Biol., 2012 Dec;90(6):691-700.
    PMID: 23016605 DOI: 10.1139/o2012-027
    Finding a proper transition structure for the peptide bond formation process can lead one to a better understanding of the role of ribosome in catalyzing this reaction. Using computer simulations, we performed the potential energy surface scan on the ester bond dissociation of P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragments of initiator tRNA(i)(met) and elongator tRNA(phe) are attached to both cognate and non-cognate amino acids as the P-site substrate. The A-site amino acid for all four calculations is methionine. We used ONIOM calculations to reduce the computational cost. Our study illustrates the reduced rate of peptide bond formation for misacylated tRNA(i)(met) in the absence of ribosomal bases. The misacylated elongator tRNA(phe), however, did not show any difference in its PES compared with that for the phe-tRNA(phe). This demonstrates the structural specification of initiator tRNA(i)(met) for the amino acids side chain.
    Matched MeSH terms: Substrate Specificity
  20. Rahman RN, Zakaria II, Salleh AB, Basri M
    Int J Mol Sci, 2012;13(8):9673-91.
    PMID: 22949824 DOI: 10.3390/ijms13089673
    PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant's active site.
    Matched MeSH terms: Substrate Specificity
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links