Displaying all 11 publications

Abstract:
Sort:
  1. Kunasundari B, Arai T, Sudesh K, Hashim R, Sulaiman O, Stalin NJ, et al.
    Appl Biochem Biotechnol, 2017 Sep;183(1):412-425.
    PMID: 28361245 DOI: 10.1007/s12010-017-2454-z
    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.
    Matched MeSH terms: Sucrose/metabolism
  2. Yaacob JS, Mahmad N, Mat Taha R, Mohamed N, Mad Yussof AI, Saleh A
    ScientificWorldJournal, 2014;2014:262710.
    PMID: 24977187 DOI: 10.1155/2014/262710
    Various explants (stem, leaf, and root) of Citrus assamensis were cultured on MS media supplemented with various combinations and concentrations (0.5-2.0 mg L(-1)) of NAA and BAP. Optimum shoot and root regeneration were obtained from stem cultures supplemented with 1.5 mg L(-1) NAA and 2.0 mg L(-1) BAP, respectively. Explant type affects the success of tissue culture of this species, whereby stem explants were observed to be the most responsive. Addition of 30 gL(-1) sucrose and pH of 5.8 was most optimum for in vitro regeneration of this species. Photoperiod of 16 hours of light and 8 hours of darkness was most optimum for shoot regeneration, but photoperiod of 24 hours of darkness was beneficial for production of callus. The morphology (macro and micro) and anatomy of in vivo and in vitro/ex vitro Citrus assamensis were also observed to elucidate any irregularities (or somaclonal variation) that may arise due to tissue culture protocols. Several minor micromorphological and anatomical differences were observed, possibly due to stress of tissue culture, but in vitro plantlets are expected to revert back to normal phenotype following full adaptation to the natural environment.
    Matched MeSH terms: Sucrose/metabolism*
  3. Kheng TY, Ding P, Abdul Rahman NA
    J Sci Food Agric, 2012 Jan 15;92(1):171-6.
    PMID: 21780132 DOI: 10.1002/jsfa.4559
    A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening.
    Matched MeSH terms: Dietary Sucrose/metabolism*
  4. Aljuboori AH, Idris A, Abdullah N, Mohamad R
    Bioresour Technol, 2013 Jan;127:489-93.
    PMID: 23159465 DOI: 10.1016/j.biortech.2012.09.016
    The production and characterization of a bioflocculant, IH-7, by Aspergillus flavus was investigated. About 0.4 g of purified bioflocculant with an average molecular weight of 2.574 × 10(4)Da could be obtained from 1L of fermentation medium. The bioflocculant mainly consisted of protein (28.5%) and sugar (69.7%), including 40% of neutral sugar, 2.48% of uronic acid and 1.8% amino sugar. The neutral sugar components are sucrose, lactose, glucose, xylose, galactose, mannose and fructose at a molar ratio of 2.4:4.4:4.1:5.8:9.9:0.8:3.1. Fourier-transform infrared spectroscopy analysis revealed that purified IH-7 contained hydroxyl, amide, carboxyl and methoxyl groups. The elemental analysis of purified IH-7 showed that the weight fractions of the elements C, H, O, N and S were 29.9%, 4.8%, 34.7%, 3.3%, and 2.0%, respectively. IH-7 had good flocculating rate in kaolin suspension without cation addition and stable over wide range of pH and temperature.
    Matched MeSH terms: Sucrose/metabolism
  5. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Sucrose/metabolism*
  6. Bhattathiry EP
    Med J Malaya, 1968 Dec;23(2):123-6.
    PMID: 4240822
    Matched MeSH terms: Sucrose/metabolism
  7. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Sucrose/metabolism
  8. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
    Matched MeSH terms: Sucrose/metabolism
  9. Ahmed AB, Rao AS, Rao MV, Taha RM
    ScientificWorldJournal, 2012;2012:897867.
    PMID: 22629221 DOI: 10.1100/2012/897867
    Gymnema sylvestre (R.Br.) is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA). The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L) and KN (0.5 mg/L). Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w) was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w). Maximum GA production (58.28 mg/g d.w) was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.
    Matched MeSH terms: Sucrose/metabolism*
  10. Oslan SNH, Halim M, Ramle NA, Saad MZ, Tan JS, Kapri MR, et al.
    Cryobiology, 2017 12;79:1-8.
    PMID: 29037980 DOI: 10.1016/j.cryobiol.2017.10.004
    The efficacy of attenuated strain of gdhA derivative Pasteurella multocida B:2 mutant as a live vaccine to control haemorrhagic septicaemia (HS) disease in cattle and buffaloes has been demonstrated. In order to use P. multocida B:2 mutant as a commercial product, it is essential to optimise its formulation for high viability and stability of the live cells. The effectiveness of freeze-drying process using different protective agent formulations for improving cells viability was explored. Sugar and nitrogen compounds were used as protective agents in freeze-drying and the capability of these compounds in maintaining the viability of mutant P. multocida B:2 during subsequent storage was investigated. A complete loss in viability of freeze-dried mutant P. multocida B:2 was monthly observed until 6-12 months of storage at -30 °C, 4 °C and 27 °C when nitrogen compound or no protective agent was added. Trehalose and sucrose showed significantly high survival rate of 93-95% immediately after freeze-drying and the viability was retained during the subsequent storage at -30 °C and 4 °C. A smooth cell surface without any cell-wall damage was observed for the cells formulated with trehalose under scanning electron micrograph. This study presented a freeze-drying process generating a dried live attenuated vaccine formulation with high stability for commercial applications.
    Matched MeSH terms: Sucrose/metabolism*
  11. Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ
    PMID: 23425283 DOI: 10.1186/1472-6882-13-39
    One vital therapeutic approach for the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycaemia by inhibiting carbohydrate digesting enzymes. The present study investigated the effects of bioassay-guided extract and fractions of the dried fruit pericarp of Phaleria macrocarpa, a traditional anti-diabetic plant, on α-glucosidase and α-amylase, in a bid to understand their anti-diabetic mechanism, as well as their possible attenuation action on postprandial glucose increase.
    Matched MeSH terms: Sucrose/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links