β-Thalassemia is a public health problem where 4.5% of Malaysians are β-thalassemia carriers. The genetic disorder is caused by defects in the β-globin gene complex which lead to reduced or complete absence of β-globin chain synthesis. Five TaqMan genotyping assays were designed and developed to detect the common β-thalassemia mutations in Malaysian Malays. The assays were evaluated with 219 "blinded" DNA samples and the results showed 100% sensitivity and specificity. The in-house designed TaqMan genotyping assays were found to be cost- and time-effective for characterization of β-thalassemia mutations in the Malaysian population.
To determine the frequency of the transforming growth factor-alpha (TGFalpha) Taq1 polymorphism in nonsyndromic cleft lip with or without cleft palate (CL+/-P) and cleft palate only (CP) in Kelantan, Malaysia.
Limnonectes kuhlii and Limnonectes leporinus are two of the Bornean fanged frogs (without advertisement call) which are widely distributed, thus thought to exhibit different evolutionary lineages and the existence of genetically cryptic species. Yet, the two species are still under study especially at the molecular level. Hence, cytochrome c oxidase I (COI) of mitochondrial gene was used to investigate suitable parameters for DNA amplification using the Polymerase Chain Reaction (PCR) method. Three PCR programmes (varied in the temperatures and period of each PCR step) were employed to identify the most efficient parameters in amplifying PCR products for both species. From the three programmes, Programme B (Initial denaturation: 96°C for 5 min; denaturation: 95°C for 45 sec; annealing: 48-53°C for 1 min 30 sec; extension: 72°C for 1 min 30 sec; final extension: 72°C for 10 min, 30 cycles) showed the highest percentage (53%) of optimal PCR products. The other two programmes showed non-specific products or “primer-dimers”. The results also suggest that the annealing temperature of 52°C, 0.025-0.05 units/µl of 1.5mM Taq polymerase, 0.04 mM of
dNTPs mix and optimal concentrations of magnesium in 50 µl of reaction mixture were sufficient enough to amplify high quality PCR products for both species. However, using Programme B, the re-amplification of the PCR products yielded “primer-dimer”. In addition, a ‘Hot-Start’ PCR method was also applied and mostly yielded in an optimal PCR amplification. Nevertheless, further research on the second amplification of the two species should be conducted to determine the causes of the primer-dimer production.
In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.
A thermostabilized, multiplex polymerase chain reaction (mPCR) assay was developed in this study for the detection of six respiratory bacterial pathogens. Specific primers were designed for an internal amplification control (IAC) and six target sequences from Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Haemophilus influenzae. The resultant seven-band positive amplification control (PAC) of this heptaplex PCR assay corresponded to 105 base pairs (bp) of IAC, 202 bp of K. pneumoniae, 293 bp of S. aureus, 349 bp of S. pneumoniae, 444 bp of P. aeruginosa, 505 bp of M. tuberculosis, and 582 bp of H. influenzae. Results found that 6% (w/v) of the stabilizer was optimum to preserve the functional conformation of Taq DNA polymerase enzyme. This assay was stable at ambient temperature for at least 6 months. The sensitivity and specificity of this assay were both 100% when testing on the intended target organisms (n = 119) and non-intended species (n = 57). The mPCR assay developed in this study enabled accurate, rapid, and simple detection of six respiratory bacteria.
Nipah and Hendra viruses belong to the novel Henipavirus genus of the Paramyxoviridae family. Its zoonotic circulation in bats and recent emergence in Malaysia with fatal consequences for humans that were in close contact with infected pigs, has made the reinforcement of epidemiological and clinical surveillance systems a priority. In this study, TaqMan RT-PCR of the Nipah nucleoprotein has been developed so that Nipah virus RNA in field specimens or laboratory material can be characterized rapidly and specifically and quantitated. The linearity of the standard curve allowed quantification of 10(3) to 10(9) RNA transcripts. The sensitivity of the test was close to 1 pfu. The kinetics of Nipah virus production in Vero cells was monitored by the determination of infectious virus particles in the supernatant fluid and by quantitation of the viral RNA. Approximately, 1000 RNA molecules were detected per virion, suggesting the presence of many non-infectious particles, similar to other RNA viruses. TaqMan real-time RT-PCR failed to detect Hendra virus DNA. Importantly, the method was able to detect virus despite a similar ratio in viremic sera from hamsters infected with Nipah virus. This standardized technique is sensitive and reliable and allows rapid detection and quantitation of Nipah RNA in both field and experimental materials used for the surveillance and specific diagnosis of Nipah virus.
Hemophilia B is an X-linked recessive disorder of the hemostasis involving a defective clotting factor IX. Amplification of the regions containing restriction fragment length polymorphisms (RFLP) can be achieved by the use of polymerase chain reaction (PCR). This paper describes the analysis of 2 RFLPs involving the Dde1 and Taq1 restriction sites within the factor IX gene in a family with hemophilia B. Digestion of the PCR products with Taq1 revealed a 163bp fragment in all the family members. This finding suggests the absence of restriction site for Taq1 enzyme. However, the Dde1 digest results in bands 369bp and 319bp segregated amongst the family members. The pattern of inheritance of the 369bp fragment in this family suggested that both the patient's mother and aunt are not carriers and that the patient's factor IX gene could have undergone a de novo mutation producing a defective factor IX gene responsible for the hemophilia B. This is supported by the fact that no family history of hemophilia B is indicated in the other male members within the family.