Displaying all 7 publications

Abstract:
Sort:
  1. Choudhary MI, Ismail M, Shaari K, Abbaskhan A, Sattar SA, Lajis NH, et al.
    J Nat Prod, 2010 Apr 23;73(4):541-7.
    PMID: 20356064 DOI: 10.1021/np900551u
    Phytochemical and cytotoxicity investigations on organic solvent extracts of the aerial parts of Tinospora crispa have led to the isolation of 15 cis-clerodane-type furanoditerpenoids. Of these, nine compounds (1-9) were found to be new. Spectroscopic assignments of a previously reported compound, borapetoside A (13), were revised on the basis of HMQC and HMBC correlations. No discernible activity was observed when compounds 10-13 were subjected to evaluation in cytotoxicity assays against human prostate cancer (PC-3) and the normal mouse fibroblast (3T3) cell lines.
    Matched MeSH terms: Tinospora/chemistry*
  2. Haque MA, Jantan I, Abbas Bukhari SN
    J Ethnopharmacol, 2017 Jul 31;207:67-85.
    PMID: 28629816 DOI: 10.1016/j.jep.2017.06.013
    ETHNOPHARMACOLOGICAL RELEVANCE: Studies on the effects of natural immunomodulators to heal various diseases related to the immune system have been a growing interest in recent years. Amongst the medicinal plants, Tinospora species (family; Menispermaceae) have been one of the widely investigated plants for their modulating effects on the immune system due to their wide use in ethnomedicine to treat various ailments related to immune-related diseases. However, their ethnopharmacological uses are mainly with limited or without scientific basis.

    AIM OF THIS REVIEW: In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements.

    MATERIALS AND METHODS: Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages.

    RESULTS: T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation.

    CONCLUSION: The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials.

    Matched MeSH terms: Tinospora/chemistry*
  3. Pachaiappan R, Tamboli E, Acharya A, Su CH, Gopinath SCB, Chen Y, et al.
    PLoS One, 2018;13(3):e0193717.
    PMID: 29494663 DOI: 10.1371/journal.pone.0193717
    Enzyme hydrolysates (trypsin, papain, pepsin, α-chymotrypsin, and pepsin-pancreatin) of Tinospora cordifolia stem proteins were analyzed for antioxidant efficacy by measuring (1) 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging activity, (2) 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging capacity, and (3) Fe2+ chelation. Trypsin hydrolysate showed the strongest DPPH• scavenging, while α-chymotrypsin hydrolysate exhibited the highest ABTS+ scavenging and Fe2+ chelation. Undigested protein strongly inhibited the gastrointestinal enzymes, trypsin (50% inhibition at enzyme/substrate ratio = 1:6.9) and α-chymotrypsin (50% inhibition at enzyme/substrate ratio = 1:1.82), indicating the prolonged antioxidant effect after ingestion. Furthermore, gel filtration purified peptide fractions of papain hydrolysates exhibited a significantly higher ABTS+ and superoxide radical scavenging as compared to non-purified digests. Active fraction 9 showing the highest radical scavenging ability was further purified and confirmed by MALDI-TOF MS followed by MS/MS with probable dominant peptide sequences identified are VLYSTPVKMWEPGR, VITVVATAGSETMR, and HIGININSR. The obtained results revealed that free radical scavenging capacity of papain hydrolysates might be related to its consistently low molecular weight hydrophobic peptides.
    Matched MeSH terms: Tinospora/chemistry*
  4. Yusoff M, Hamid H, Houghton P
    Molecules, 2014 Jan 20;19(1):1201-11.
    PMID: 24448061 DOI: 10.3390/molecules19011201
    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.
    Matched MeSH terms: Tinospora/chemistry*
  5. Abood WN, Fahmi I, Abdulla MA, Ismail S
    PMID: 24969238 DOI: 10.1186/1472-6882-14-205
    Immunomodulators are substances that modify immune system response to a threat. Immunomodulators modulate and potentiate the immune system, keeping it highly prepared for any threat. The immunomodulatory effect of the traditional medicine Tinospora crispa is investigated in this work.
    Matched MeSH terms: Tinospora/chemistry*
  6. Thomas A, Rajesh EK, Kumar DS
    Phytother Res, 2016 Mar;30(3):357-66.
    PMID: 26749336 DOI: 10.1002/ptr.5559
    Tinospora crispa is a medicinal plant belonging to the botanical family Menispermiaceae. The plant is widely distributed in Southeast Asia and the northeastern region of India. A related species Tinospora cordifolia is used in Ayurveda for treating a large spectrum of diseases. Traditional healers of Thailand, Malaysia, Guyana, Bangladesh and the southern Indian province of Kerala use this plant in the treatment of diabetes. Many diterpenes, triterpenes, phytosteroids, alkaloids and their glycosides have been isolated from T. crispa. Cell culture and animal studies suggest that the herb stimulates secretion of insulin from β-cells. It also causes dose-dependent and time-dependent enhancement of glucose uptake in muscles. However, in view of the reported hepatotoxicity, this herb may be used with caution. This article reviews the animal studies and human clinical trials carried out using this herb. Areas of future research are also identified.
    Matched MeSH terms: Tinospora/chemistry*
  7. Ahmad W, Jantan I, Kumolosasi E, Bukhari SN
    Drug Des Devel Ther, 2015;9:2961-73.
    PMID: 26089645 DOI: 10.2147/DDDT.S85405
    Tinospora crispa (TC) has been used in folkloric medicine for the treatment of various diseases and has been reported for several pharmacological activities. However, the effects of TC extract on the immune system are largely unknown. Therefore, the present study was aimed to investigate the immunomodulatory effects of a standardized 80% ethanol extract of the stem of TC on innate immune responses. Male Wistar Kyoto rats were treated daily at 100 mg/kg, 200 mg/kg, and 400 mg/kg doses of the extract for 21 days by oral gavage. The immunomodulatory potential of TC was evaluated by determining its effect on chemotaxis and phagocytic activity of neutrophils isolated from the blood of rats. To further elucidate the mechanism of action, its effects on the proliferation of T- and B-lymphocytes and T-lymphocytes subsets (CD4+ and CD8+) and on the secretion of Th1 and Th2 cytokines were also monitored. The main components of the extracts, syringin and magnoflorine, were identified and quantitatively analyzed in the extracts by using a validated reversed-phase high-performance liquid chromatography method. It was observed that the chemotactic activity of neutrophils obtained from extract-treated rats increased as compared to controls. A dose-dependent increase in the number of migrated cells and phagocytosis activity of neutrophils was observed. Dose-dependent increase was also observed in the T- and B-lymphocytes proliferation stimulated with concanavalin A (5 μg/mL) and lipopolysaccharide (10 μg/mL), and was statistically significant at 400 mg/kg (P>0.01). Apart from cell-mediated immune response, the concentrations of Th1 (TNF-α, IL-2, and IFN-γ) and Th2 (IL-4) cytokines were significantly increased in sera of rats treated with different doses as compared with the control group. From these findings, it can be concluded that TC possesses immunostimulatory activity and has therapeutic potential for the prevention of immune diseases.
    Matched MeSH terms: Tinospora/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links