Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Yap WY, Hwang JS
    Toxins (Basel), 2023 Jun 13;15(6).
    PMID: 37368697 DOI: 10.3390/toxins15060396
    Hydra actinoporin-like toxin 4 (HALT-4) differs from other actinoporins due to its N-terminal propart that contains approximately 103 additional residues. Within this region, we identified five dibasic residues and assumed that, when cleaved, they could potentially exhibit HALT-4's cytolytic activity. We created five truncated versions of HALT-4 (tKK1, tKK2, tRK3, tKK4 and tKK5) to investigate the role of the N-terminal region and potential cleavage sites on the cytolytic activity of HALT-4. However, our results demonstrated that the propart-containing HALT-4 (proHALT-4), as well as the truncated versions tKK1 and tKK2, exhibited similar cytolytic activity against HeLa cells. In contrast, tRK3, tKK4 and tKK5 failed to kill HeLa cells, indicating that cleavage at the KK1 or KK2 sites did not enhance cytolytic activity but may instead facilitate the sorting of tKK1 and tKK2 to the regulated secretory pathway for eventual deposition in nematocysts. Moreover, RK3, KK4 and KK5 were unlikely to serve as proteolytic cleavage sites, as the amino acids between KK2 and RK3 are also crucial for pore formation.
    Matched MeSH terms: Toxins, Biological*
  2. Wong KY, Tan CH, Tan NH
    Am J Trop Med Hyg, 2016 06 01;94(6):1392-9.
    PMID: 27022154 DOI: 10.4269/ajtmh.15-0871
    Geographical variations of snake venoms can result in suboptimal effectiveness of Indian antivenoms that are currently used in most South Asian countries. This study investigated the toxicity and neutralization profile of the venom and toxins from Pakistani spectacled cobra, Naja naja, using VINS polyvalent antivenom (VPAV, India), Naja kaouthia monovalent antivenom (NKMAV, Thailand), and neuro bivalent antivenom (NBAV, Taiwan). Cation-exchange and reverse-phase high-performance liquid chromatography fractionations followed by toxin identification through liquid chromatography-mass spectrometry (MS)/MS indicated that the venom comprised mainly of postsynaptic neurotoxins (NTXs) (long neurotoxins [LNTXs], 28.3%; short neurotoxins [SNTXs], 8%), cytotoxins (CTXs) (31.2%), and acidic phospholipases A2 (12.3%). NKMAV is the most effective in neutralizing the lethal effect of the venom (potency = 1.1 mg venom/mL) and its LNTX (potency = 0.5 mg toxin/mL), consistent with the high content of LNTX in N. kaouthia venom. VPAV was effective in neutralizing the CTX (potency = 0.4 mg toxin/mL), in agreement with the higher CTX abundance in Indian cobra venom. All the three antivenoms were weak in neutralizing the SNTX (potency = 0.03-0.04 mg toxin/mL), including NBAV that was raised from the SNTX-rich Taiwanese cobra venom. In a challenge-rescue experiment, envenomed mice were prevented from death by a maximal dose of VPAV (intravenous 200 μL) but the recovery from paralysis was slow, indicating the need for higher or repeated doses of VPAV. Our results suggest that optimal neutralization for Pakistani N. naja venom may be achieved by improving the formulation of antivenom production to enhance antivenom immunoreactivity against long and SNTXs.
    Matched MeSH terms: Toxins, Biological/toxicity*; Toxins, Biological/chemistry
  3. Cheah WK, Ishikawa K, Othman R, Yeoh FY
    J Biomed Mater Res B Appl Biomater, 2017 07;105(5):1232-1240.
    PMID: 26913694 DOI: 10.1002/jbm.b.33475
    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017.
    Matched MeSH terms: Toxins, Biological/chemistry*
  4. Ng KT, Tay HW, Namkabir S, Kovilpillai FJ
    J Oral Maxillofac Surg, 2020 Oct;78(10):1766-1769.
    PMID: 32544473 DOI: 10.1016/j.joms.2020.05.013
    Pederin, a vesicant chemical and one of the most powerful animal toxins in the world, is produced by an endosymbiont bacteria (Pseudomonas spp) found on the beetle Paederus fuscipes. This small, red- and black-striped beetle is also commonly known as the Charlie or rove beetle. Accidental contact with skin causes Paederus dermatitis, with the clinical presentation ranging from mild dermatitis to more severe vesiculobullous lesions. We report a rare case of severe lip destruction caused by the Charlie beetle in a 24-year-old man. Treatment involved intravenous antibiotics in addition to local wound debridement. The thinner stratum corneum on the lips and close proximity to the oral cavity could have resulted in the severe tissue destruction encountered.
    Matched MeSH terms: Toxins, Biological*
  5. Chong YH, Beng CG
    Med J Malaya, 1965 Sep;20(1):49-50.
    PMID: 4221413
    Matched MeSH terms: Toxins, Biological*
  6. Zhang C, Lim PT, Li X, Gu H, Li X, Anderson DM
    Reg Stud Mar Sci, 2020 Sep;39.
    PMID: 33241099 DOI: 10.1016/j.rsma.2020.101397
    Gymnodinium catenatum is a cosmopolitan, bloom-forming dinoflagellate known to produce a suite of potent paralytic shellfish poisoning (PSP) toxins. Here, we revisit two major blooms of G. catenatum along the Fujianese Coast, China, in 2017 and 2018. The impact area of the 2017 bloom was larger than that of the 2018 event. Field sampling and remote satellite sensing revealed that alongshore transport driven by the southwest wind, as well as physical accumulation driven by the northeast wind, played important roles in the development and distribution of the two bloom events. The relationship between wind-induced hydrodynamic conditions and the unprecedented HAB events established in this study adds greatly to our understanding of algal bloom dynamics along the Fujianese coast. These results improve our ability to detect, track, and forecast G. catenatum blooms, thereby potentially minimizing the negative impacts of future HAB events.
    Matched MeSH terms: Toxins, Biological
  7. Muhamad Rusdi Ahmad Rusmil, Iekhsan Othman, Che Anuar Che Mohamad
    MyJurnal
    Venom is a mixture of biologically active toxins that affect normal physiological functions. With the advance in technology, the complexity and functions of venom and its toxins are slowly being revealed. It has become important source for therapeutic, diagnostic and cosmetic agents. However, there is concern among the Muslim community pertaining to halal and safety issues on the venom and venom-derived product usage. There are few studies that discuss the Islamic views in the usage of venom and venom-based product in medicine and cosmetic applications. There is a need for Muslim scientists and scholars to seriously identify the potential ethical and safety issues in the usage of venom and venom-derived products in view of the widespread application in medicine and cosmetic, which subsequently forming the basis for relevant and reliable shariah ruling. This is an attempt to review the relevant articles based on the following keywords: venom and Islamic ruling, venom-based product, venom and medicine, venom and cosmetic, antivenom, venom toxin, snake poison and venom diagnostics. It will also attempt to clarify and elaborate the implication of the “halal” status for venom-based product. Finaly the current available shariah rulings on the usage of venom and venom-based product both in medical and cosmetic area and the related principle of fiqh involved will be analyzed. The findings from this review, particularly the current available ruling will allow various parties to be well informed on the current ruling and related issues on the usage of this products.
    Matched MeSH terms: Toxins, Biological
  8. Ee GC, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M
    Nat Prod Res, 2006 Oct;20(12):1067-73.
    PMID: 17127660
    Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4), 1,6-dihydroxy-3,7-dimethoxy-2-(3-methylbut-2-enyl)-xanthone (5), mangostanol (6) and 5,9-dihydroxy-8- methoxy-2,2-dimethyl-7-(3-methylbut-2-enyl)-2H,6H-pyrano-[3,2-b]-xanthene-6-one (7). The structures of these compounds were determined by spectroscopic methods such as 1H NMR, 13C NMR, mass spectrometry (MS) and by comparison with previous studies. All the crude extracts when screened for their larvicidal activities indicated very good toxicity against the larvae of Aedes aegypti. This article reports the isolation and identification of the above compounds as well as bioassay data for the crude extracts. These bioassay data have not been reported before.
    Matched MeSH terms: Toxins, Biological/toxicity; Toxins, Biological/chemistry
  9. Dao HV, Uesugi A, Uchida H, Watanabe R, Matsushima R, Lim ZF, et al.
    Toxins (Basel), 2021 09 15;13(9).
    PMID: 34564661 DOI: 10.3390/toxins13090657
    In the coastal countries of Southeast Asia, fish is a staple diet and certain fish species are food delicacies to local populations or commercially important to individual communities. Although there have been several suspected cases of ciguatera fish poisoning (CFP) in Southeast Asian countries, few have been confirmed by ciguatoxins identification, resulting in limited information for the correct diagnosis of this food-borne disease. In the present study, ciguatoxin-1B (CTX-1B) in red snapper (Lutjanus bohar) implicated in a CFP case in Sabah, Malaysia, in December 2017 was determined by single-quadrupole selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS). Continuous consumption of the toxic fish likely resulted in CFP, even when the toxin concentration in the fish consumed was low. The identification of the fish species was performed using the molecular characterization of the mitochondrial cytochrome c oxidase subunit I gene marker, with a phylogenetic analysis of the genus Lutjanus. This is the first report identifying the causative toxin in fish-implicated CFP in Malaysia.
    Matched MeSH terms: Toxins, Biological/analysis*; Toxins, Biological/toxicity*
  10. Yap WY, Hwang JS
    Molecules, 2018 Oct 04;23(10).
    PMID: 30287801 DOI: 10.3390/molecules23102537
    A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
    Matched MeSH terms: Toxins, Biological/metabolism*; Toxins, Biological/chemistry
  11. Azman N, Zainudin NAIM, Ibrahim WNW
    Trop Life Sci Res, 2020 Oct;31(3):91-107.
    PMID: 33214858 DOI: 10.21315/tlsr2020.31.3.7
    Fumonisin B1 (FB1) is a common mycotoxin produced by Fusarium species particularly F. proliferatum and F. verticillioides. The toxin produced can cause adverse effects on humans and animals. The objectives of this study were to detect the production of FB1 based on the amplification of FUM1 gene, to quantify FB1 produced by the isolates using Ultra-fast Liquid Chromatography (UFLC) analysis, to examine the embryotoxicity effect of FB1 and to determine EC50 toward the larvae of zebrafish (Danio rerio). Fifty isolates of Fusarium species were isolated from different hosts throughout Malaysia. Successful amplification of the FUM1 gene showed the presence of this gene (800 bp) in the genome of 48 out of 50 isolates. The highest level of FB1 produced by F. proliferatum isolate B2433 was 6677.32 ppm meanwhile F. verticillioides isolate J1363 was 954.01 ppm. From the assessment of embryotoxicity test of FB1 on larvae of zebrafish, five concentrations of FB1 (0.43 ppm, 0.58 ppm, 0.72 ppm, 0.87 ppm and 1.00 ppm) were tested. Morphological changes of the FB1 exposed-larvae were observed at 24 to 168 hpf. The mortality rate and abnormality of zebrafish larvae were significantly increased at 144 hpf exposure. Meanwhile, the spontaneous tail coiling showed a significant difference. There were no significant differences in the heartbeat rate. As a conclusion, the presence of FUM1 in every isolate can be detected by FUM1 gene analysis and both of the species produced different concentrations of FB1. This is the first report of FB1 produced by Fusarium species gave a significant effect on zebrafish development.
    Matched MeSH terms: Toxins, Biological
  12. Chew KS, Mohidin MA, Ahmad MZ, Tuan Kamauzaman TH, Mohamad N
    Int J Emerg Med, 2008 Sep;1(3):205-8.
    PMID: 19384518 DOI: 10.1007/s12245-008-0054-y
    Despite being a favorite delicacy, only 200-300 of the 5,000 known mushroom species have been clearly established to be safe for consumption. Cases of mushroom poisoning have been reported with diverse clinical syndromes. A syndromic classification of mushroom poisoning has recently been developed to facilitate early interventions. We present a series of five cases of mushroom poisoning with muscarinic manifestations to highlight the difficulties we faced with exact species and toxin identification and the importance of this syndromic classification. The common symptoms in our case series are blurred vision, diarrhea, vomiting, and abdominal cramps.
    Matched MeSH terms: Toxins, Biological
  13. Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S
    PLoS One, 2011;6(3):e16707.
    PMID: 21408228 DOI: 10.1371/journal.pone.0016707
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.
    Matched MeSH terms: Toxins, Biological/metabolism
  14. Tan ET, Materne CM, Silcock RG, D'Arcy BR, Al Jassim R, Fletcher MT
    J Agric Food Chem, 2016 Aug 31;64(34):6613-21.
    PMID: 27509381 DOI: 10.1021/acs.jafc.6b02437
    Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine the indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analyzed. Of the 84 samples analyzed, *I. spicata (the asterisk indicates a naturalized species) contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species and at only low levels (<10 mg/kg DM) in 2 of 8 I. colutea specimens and in 1 of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha, *I. oblongifolia, I. australis, and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (from 159 to 2128 mg/kg DM, n = 51) and differs across both regions and seasons. Its first regrowth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only *I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing herbivores.
    Matched MeSH terms: Toxins, Biological/analysis*
  15. Tan NH, Tan CS
    Toxicon, 1989;27(3):349-57.
    PMID: 2543103
    Trimeresurus wagleri (speckled pit viper) venom exhibited the usual set of enzyme activities occurring in pit viper venoms but the content of alkaline phosphomonoesterase was unusually high, whereas the proportions of protease and arginine ester hydrolase were very low. The venom also exhibited weak thrombin-like activity but did not exhibit hemorrhagic or anticoagulant activity. Analysis of the Sephadex G-200 gel filtration fractions of the venom indicated that the lethal fraction was a low mol.wt protein, and that fractions exhibiting phosphodiesterase, phosphomonoesterase, arginine ester hydrolase, thrombin-like enzyme, L-amino acid oxidase and phospholipase A activities were not lethal. Two lethal toxins, designated as wagleri toxins 1 and 2, were isolated from the venom using Sephadex G-50 gel filtration chromatography followed by SP-Sephadex C-25 ion exchange chromatography. The mol.wts of the two toxins were 8900 by gel filtration. The LD50 (i.v.) values in mice for wagleri toxins 1 and 2 are 0.17 microgram/g and 0.19 microgram/g, respectively.
    Matched MeSH terms: Toxins, Biological/isolation & purification; Toxins, Biological/toxicity
  16. Tan ET, Al Jassim R, Cawdell-Smith AJ, Ossedryver SM, D'Arcy BR, Fletcher MT
    J Agric Food Chem, 2016 Aug 31;64(34):6622-9.
    PMID: 27477889 DOI: 10.1021/acs.jafc.6b02707
    Indospicine (l-2-amino-6-amidinohexanoic acid) is a natural hepatotoxin found in all parts of some Indigofera plants such as Indigofera linnaei and Indigofera spicata. Several studies have documented a susceptibility to this hepatotoxin in different species of animals, including cattle, sheep, dogs, and rats, which are associated with mild to severe liver disease after prolonged ingestion. However, there is little published data on the effects of this hepatotoxin in camels, even though Indigofera plants are known to be palatable to camels in central Australia. The secondary poisoning of dogs after prolonged dietary exposure to residual indospicine in camel muscle has raised additional food safety concerns. In this study, a feeding experiment was conducted to investigate the in vivo accumulation, excretion, distribution, and histopathological effects of dietary indospicine on camels. Six young camels (2-4 years old), weighing 270-390 kg, were fed daily a roughage diet consisting of Rhodes grass hay and lucerne chaff, supplemented with Indigofera and steam-flaked barley. Indigofera (I. spicata) was offered at 597 mg DM/kg body weight (bw)/day, designed to deliver 337 μg indospicine/kg bw/day, and fed for a period of 32 days. Blood and muscle biopsies were collected over the period of the study. Concentrations of indospicine in the plasma and muscle biopsy samples were quantitated by validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The highest concentrations in plasma (1.01 mg/L) and muscle (2.63 mg/kg fresh weight (fw)) were found at necropsy (day 33). Other tissues were also collected at necropsy, and analysis showed ubiquitous distribution of indospicine, with the highest indospicine accumulation detected in the pancreas (4.86 ± 0.56 mg/kg fw) and liver (3.60 ± 1.34 mg/kg fw), followed by the muscle, heart, and kidney. Histopathological examination of liver tissue showed multiple small foci of predominantly mononuclear inflammatory cells. After cessation of Indigofera intake, indospicine present in plasma in the remaining three camels had a longer terminal elimination half-life (18.6 days) than muscle (15.9 days), and both demonstrated monoexponential decreases.
    Matched MeSH terms: Toxins, Biological/blood; Toxins, Biological/metabolism*
  17. Chan WT, Espinosa M, Yeo CC
    Front Mol Biosci, 2016;3:9.
    PMID: 27047942 DOI: 10.3389/fmolb.2016.00009
    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
    Matched MeSH terms: Toxins, Biological
  18. Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, et al.
    Microorganisms, 2021 Apr 13;9(4).
    PMID: 33924471 DOI: 10.3390/microorganisms9040823
    Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
    Matched MeSH terms: Toxins, Biological
  19. Pin LC, Teen LP, Ahmad A, Usup G
    Mar Biotechnol (NY), 2001 May;3(3):246-55.
    PMID: 14961362
    The genus Ostreopsis is an important component of benthic and epiphytic dinoflagellate assemblages in coral reefs and seaweed beds of Malaysia. Members of the species may produce toxins that contribute to ciguatera fish poisoning. In this study, two species have been isolated and cultured, Ostreopsis ovata and Ostreopsis lenticularis. Analyses of the 5.8S subunit and internal transcribed spacer regions ITS1 and ITS2 of the ribosomal RNA gene sequences of these two species showed that they are separate species, consistent with morphological designations. The nucleotide sequences of the 5.8S subunit and ITS1 and ITS2 regions of the rRNA gene were also used to evaluate the interpopulation and intrapopulation genetic diversity of O. ovata found in Malaysian waters. Results showed a low level of sequence divergence within populations. At the interpopulation level, the rRNA gene sequence distinguished two groups of genetically distinct strains, representative of a Malacca Straits group (isolates from Port Dickson) and a South China Sea group (isolates from Pulau Redang and Kota Kinabalu). Part of the sequences in the ITS regions may be useful in the design of oligonucleotide probes specific for each group. Results from this study show that the ITS regions can be used as genetic markers for taxonomic, biogeographic, and fine-scale population studies of this species.
    Matched MeSH terms: Toxins, Biological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links