METHODS: A PubMed search was performed on HIV or acquired immune deficiency syndrome together with a search for specific vaccines. Review of the literature was performed to develop recommendations on vaccinations for HIV-positive travellers to high-risk destinations.
RESULTS: The immune responses to several vaccines are reduced in HIV-positive people. In the case of vaccines for hepatitis A, hepatitis B, influenza, pneumococcus, meningococcus and yellow fever there is a good body of data in the literature showing reduced immune responsiveness and also to help guide appropriate vaccination strategies. For other vaccines like Japanese encephalitis, rabies, typhoid fever, polio and cholera the data are not as robust; however, it is still possible to gain some understanding of the reduced responses seen with these vaccines.
CONCLUSION: This review provides a summary of the immunological responses to commonly used vaccines for the HIV-positive travellers. This information will help guide travel medicine practitioners in making decisions about vaccination and boosting of travellers with HIV.
RESULTS: This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis.
CONCLUSION: These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.