METHODS: A total of 127 adults aged 18-40 years who completed clinical blood pressure assessment and echocardiography phenotyping at rest and during cardiopulmonary exercise testing, were included. Measurements were compared between participants with suboptimal blood pressure ≥120/80mm Hg (n = 68) and optimal blood pressure <120/80mm Hg (n = 59). Left ventricular systolic function during exercise was obtained from an apical four chamber view, while resting left atrial function was assessed from apical four and two chamber views.
RESULTS: Participants with suboptimal blood pressure had higher left ventricular mass (p = 0.031) and reduced mitral E velocity (p = 0.02) at rest but no other cardiac differences. During exercise, their rise in left ventricular ejection fraction was reduced (p = 0.001) and they had higher left ventricular end diastolic and systolic volumes (p = 0.001 and p = 0.001, respectively). Resting cardiac size predicted left ventricular volumes during exercise but only left atrial booster pump function predicted the left ventricular ejection fraction response ( β = .29, p = 0.011). This association persisted after adjustment for age, sex, body mass index, and mean arterial pressure.
CONCLUSION: Young adults with suboptimal blood pressure have a reduced left ventricular systolic response to exercise, which can be predicted by their left atrial booster pump function at rest. Echocardiographic measures of left atrial function may provide an early marker of functionally relevant, subclinical, cardiac remodelling in young adults with hypertension.
METHODS AND RESULTS: We recruited 101 normotensive young adults (n = 47 born preterm; 32.8 ± 3.2 weeks' gestation and n = 54 term-born controls). Peak VO2 was determined by cardiopulmonary exercise testing (CPET), and lung function assessed using spirometry. Percentage predicted values were then calculated. HRR was defined as the decrease from peak HR to 1 min (HRR1) and 2 min of recovery (HRR2). Four-chamber echocardiography views were acquired at rest and exercise at 40% and 60% of CPET peak power. Change in left ventricular ejection fraction from rest to each work intensity was calculated (EFΔ40% and EFΔ60%) to estimate myocardial functional reserve. Peak VO2 and per cent of predicted peak VO2 were lower in preterm-born young adults compared with controls (33.6 ± 8.6 vs. 40.1 ± 9.0 mL/kg/min, P = 0.003 and 94% ± 20% vs. 108% ± 25%, P = 0.001). HRR1 was similar between groups. HRR2 decreased less in preterm-born young adults compared with controls (-36 ± 13 vs. -43 ± 11 b.p.m., P = 0.039). In young adults born preterm, but not in controls, EFΔ40% and EFΔ60% correlated with per cent of predicted peak VO2 (r2 = 0.430, P = 0.015 and r2 = 0.345, P = 0.021). Similarly, EFΔ60% correlated with HRR1 and HRR2 only in those born preterm (r2 = 0.611, P = 0.002 and r2 = 0.663, P = 0.001).
CONCLUSIONS: Impaired myocardial functional reserve underlies reductions in peak VO2 and HRR in young adults born moderately preterm. Peak VO2 and HRR may aid risk stratification and treatment monitoring in this population.
METHODS AND RESULTS: Patients with symptomatic HF, left ventricular ejection fraction (LVEF) ≥40%, estimated glomerular filtration rate ≥ 25 ml/min/1.73 m2, elevated natriuretic peptide levels and evidence of structural heart disease were enrolled and randomized to finerenone titrated to a maximum of 40 mg once daily or matching placebo. We validly randomized 6001 patients to finerenone or placebo (mean age 72 ± 10 years, 46% women). The majority were New York Heart Association functional class II (69%). The baseline mean LVEF was 53 ± 8% (range 34-84%); 36% of participants had a LVEF <50% and 64% had a LVEF ≥50%. The median N-terminal pro-B-type natriuretic peptide (NT-proBNP) was 1041 (interquartile range 449-1946) pg/ml. A total of 1219 (20%) patients were enrolled during or within 7 days of a worsening HF event, and 3247 (54%) patients were enrolled within 3 months of a worsening HF event. Compared with prior large-scale HFmrEF/HFpEF trials, FINEARTS-HF participants were more likely to have recent (within 6 months) HF hospitalization and greater symptoms and functional limitations. Further, concomitant medications included a larger percentage of sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors than previous trials.
CONCLUSIONS: FINEARTS-HF has enrolled a broad range of high-risk patients with HFmrEF and HFpEF. The trial will determine the safety and efficacy of finerenone in this population.
METHODS: During isoflurane-supplemented remifentanil-based anesthesia for patients undergoing cardiac surgery with preoperative LV ejection fraction greater than 50% (n = 20), we analyzed the changes of S' at each isoflurane dose increment (1.0, 1.5, and 2.0 minimum alveolar concentration [MAC]: T1, T2, and T3, respectively) with a fixed remifentanil dosage (1.0 μg/min/kg) by using transesophageal echocardiography.
RESULTS: Mean S' values (95% confidence interval [CI]) at T1, T2, and T3 were 10.5 (8.8-12.2), 9.5 (8.3-10.8), and 8.4 (7.3-9.5) cm/s, respectively (P < 0.001 in multivariate analysis of variance test). Their mean differences at T1 vs. T2, T2 vs. T3, and T1 vs. T3 were -1.0 (-1.6, -0.3), -1.1 (-1.7, -0.6), and -2.1 (-3.1, -1.1) cm/s, respectively. Phenylephrine infusion rates were significantly increased (0.26, 0.22, and 0.47 μg/kg/min at T1, T2, and T3, respectively, P < 0.001).
CONCLUSION: Isoflurane increments (1.0-2.0 MAC) dose-dependently reduced LV systolic long-axis performance during cardiac surgeries with a preserved preoperative systolic function.
Methods: Twenty-seven patients with history of anterior myocardial infarction (MI) and baseline left ventricular ejection fraction (LVEF) of less than 35% were recruited into this study. Patients who are eligible for revascularization were grouped into group A (MSCs infusion with concurrent revascularization) or group B (revascularization only) while patients who were not eligible for revascularization were allocated in group C to receive intracoronary MSCs infusion. LV function was measured using echocardiography.
Results: Patients who received MSCs infusion (either with or without revascularization) demonstrated significant LVEF improvements at 3, 6 and 12 months post-infusion when compared to baseline LVEF within its own group. When comparing the groups, the magnitude of change in LVEF from baseline for third visits i.e., 12 months post-infusion was significant for patients who received MSCs infusion plus concurrent revascularization in comparison to patients who only had the revascularization procedure.
Conclusions: MSCs infusion significantly improves LV function in ICM patients. MSCs infusion plus concurrent revascularization procedure worked synergistically to improve cardiac function in patients with severe ICM.
METHODS: A total of 119 post-percutaneous coronary intervention ST elevation myocardial infarction patients with TIMI flow grade >2 were prospectively included in the study. Left ventricular global longitudinal strain was quantified by 2-dimensional speckletracking echocardiography, and left ventricular mechanical dispersion was determined at baseline and after 1 year to assess adverse cardiac remodeling. The levels of circulating biomarkers were measured at the baseline. TIMI score and the Global Registry of Acute Coronary Events score systems were used to evaluate the prognosis of patients.
RESULTS: Patients with high quartile versus low quartile of left ventricular mechanical dispersion exerted higher Global Registry of Acute Coronary Events and TIMI score grades, left ventricular endsystolic volume, global longitudinal strain, and levels of the N-terminal fragment of brain natriuretic peptide and lower left ventricular ejection fraction. Multivariate log regression showed that N-terminal fragment of brain natriuretic peptide > 953 pg/mL, global longitudinal strain > -8%, and high quartile of left ventricular mechanical dispersion remained independent predictors for adverse cardiac remodeling. Addition of left ventricular mechanical dispersion to the N-terminal fragment of brain natriuretic peptide improved the discriminative potency of the whole model.
CONCLUSION: Measurement of left ventricular mechanical dispersion might be useful in determining the risk of adverse cardiac remodeling in post-percutaneous coronary intervention ST elevation myocardial infarction patients.
METHODS: We searched PubMed/Medline, Web of Science, and Cochrane Library from the inception of the database to November 2022. All studies that compared LBBP with BVP in patients with HFrEF and indications for CRT were included. Two reviewers performed study selection, data abstraction, and risk of bias assessment. We calculated risk ratios (RRs) with the Mantel-Haenszel method and mean difference (MD) with inverse variance using random effect models. We assessed heterogeneity using the I2 index, with I2 > 50% indicating significant heterogeneity.
RESULTS: Ten studies (9 observational studies and 1 randomized controlled trial; 616 patients; 15 centers) published between 2020 and 2022 were included. We observed a shorter fluoroscopy time (MD: 9.68, 95% confidence interval [CI]: 4.49-14.87, I2 = 95%, p ventricular ejection fraction improvement (MD: 5.80, 95% CI: 4.81-6.78, I2 = 0%, p ventricular end-diastolic diameter reduction (MD: 2.11, 95% CI: 0.12-4.10, I2 = 18%, p = .04, millimeter). There was a greater improvement in New York Heart Association function class with LBBP (MD: 0.37, 95% CI: 0.05-0.68, I2 = 61%, p = .02). LBBP was also associated with a lower risk of a composite of heart failure hospitalizations (HFH) and all-cause mortality (RR: 0.48, 95% CI: 0.25-0.90, I2 = 0%, p = .02) driven by reduced HFH (RR: 0.39, 95% CI: 0.19-0.82, I2 = 0%, p = .01). However, all-cause mortality rates were low in both groups (1.52% vs. 1.13%) and similar (RR: 0.98, 95% CI: 0.21-4.68, I2 = 0%, p = .87).
CONCLUSION: This meta-analysis of primarily nonrandomized studies suggests that LBBP is associated with a greater improvement in left ventricular systolic function and a lower rate of HFH compared to BVP. There was uniformity of these findings in all of the included studies. However, it would be premature to conclude based solely on the current meta-analysis alone, given the limitations stated. Dedicated, well-designed, randomized controlled trials and observational studies are needed to elucidate better the comparative long-term efficacy and safety of LBBP CRT versus BIV CRT.
METHODS: This systematic review searched MEDLINE, CINAHL+, Econlit, Scopus, the Cochrane Library, the National Health Service Economic Evaluation Database and the Cost-Effectiveness Analysis Registry from inception to 31 December, 2022, for relevant economic evaluations, which were critically appraised using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) and Bias in Economic Evaluation (ECOBIAS) criteria. The costs, quality-adjusted life-years, incremental cost-effectiveness ratios and cost-effectiveness thresholds were qualitatively analysed. Net monetary benefits at different decision thresholds were also computed. Subgroup analyses addressing the heterogeneity of economic outcomes were conducted. All costs were adjusted to 2023 international dollar (US$) values using the CCEMG-EPPI-Centre cost converter.
RESULTS: Thirty-nine economic evaluations that evaluated dapagliflozin and empagliflozin in patients with heart failure were found: 32 for the left ventricular ejection fraction (LVEF) ≤ 40% and seven for LVEF > 40%. Sodium-glucose cotransporter-2 inhibitors were cost-effective in all but two economic evaluations for LVEF > 40%. Economic outcomes varied widely, but favoured SGLT2i use in LVEF ≤ 40% over LVEF > 40% and upper-middle income over high-income countries. At a threshold of US$30,000/quality-adjusted life-year, ~ 90% of high to upper-middle income countries would consider SGLT2i cost-effective for heart failure treatment. The generalisability of study findings to low- and low-middle income countries is limited because of insufficient evidence.
CONCLUSIONS: Using SGLT2i to treat heart failure is cost-effective, with more certainty in LVEF ≤ 40% compared to LVEF > 40%. Policymakers in jurisdictions where economic evaluations are not available could potentially use this study's findings to make informed decisions about treatment adoption.
SYSTEMATIC REVIEW PROTOCOL REGISTRATION: This study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO; CRD42023388701).