Displaying publications 1 - 20 of 29 in total

  1. McMinn PC
    FEMS Microbiol. Rev., 2002 Mar;26(1):91-107.
    PMID: 12007645
    Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
    Matched MeSH terms: Virulence/genetics
  2. Pang T
    Trends Microbiol., 1998 Sep;6(9):339-42.
    PMID: 9778724
    Matched MeSH terms: Virulence/genetics
  3. Osman HA, Hasan H, Suppian R, Hassan S, Andee DZ, Abdul Majid N, et al.
    Turk J Med Sci, 2015;45(4):940-6.
    PMID: 26422871
    The severity of disease outcome in dyspepsia has been attributed to Helicobacter pylori virulence genes. The aim of this study was to determine the distribution of H. pylori virulence genes (cagA, babA2, and dupA) and to determine whether or not there arises a significant correlation with clinical dyspepsia outcomes.
    Matched MeSH terms: Virulence/genetics
  4. Tan SY, Dutta A, Jakubovics NS, Ang MY, Siow CC, Mutha NV, et al.
    BMC Bioinformatics, 2015;16:9.
    PMID: 25591325 DOI: 10.1186/s12859-014-0422-y
    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.
    Matched MeSH terms: Virulence/genetics*
  5. Puah SM, Puthucheary SD, Wang JT, Pan YJ, Chua KH
    ScientificWorldJournal, 2014;2014:590803.
    PMID: 25215325 DOI: 10.1155/2014/590803
    The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P = 0.049) at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.
    Matched MeSH terms: Virulence/genetics*
  6. Teh CS, Chua KH, Thong KL
    J. Biomed. Biotechnol., 2010;2010:817190.
    PMID: 20671932 DOI: 10.1155/2010/817190
    Molecular analysis of Malaysian Vibrio cholerae was carried out using a multiple-locus variable-number tandem repeat analysis (MLVA) assay based on 7 loci of V. cholerae. The discriminatory ability of the assay was compared with pulsed-field gel electrophoresis (PFGE) using 43 Malaysian V. cholerae isolated from various sources. In addition, the virulotypes of the strains were determined. Based on MLVA, 38 allelic profiles were obtained (F = 0.63) while PFGE generated 35 pulsotypes (F = 0.71). Simpson's index of diversity for different VNTR loci ranged from 0.59 to 0.92. The combined loci increased the discriminatory index to 0.99 which was comparable with PFGE (D = 0.99). Most of the environmental non-O1/non-O139 strains harbored rtxA, rstR, toxR, and hlyA only, and the virulotype of this serogroup was significantly different (P < .01) from clinical/environmental O1 and environmental O139 strains. In conclusion, the MLVA assay developed in this study was a useful genotyping tool with comparable discriminatory power with PFGE. In addition, the combination of the two approaches can further distinguish the strains from different sources and geographical regions of isolation.
    Matched MeSH terms: Virulence/genetics
  7. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Virulence/genetics
  8. Okubo Y
    Malays J Pathol, 2017 08;39(2):207-208.
    PMID: 28866707
    No abstract available.
    Matched MeSH terms: Virulence/genetics*
  9. Chong YM, How KY, Yin WF, Chan KG
    Molecules, 2018 Apr 21;23(4).
    PMID: 29690523 DOI: 10.3390/molecules23040972
    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
    Matched MeSH terms: Virulence/genetics
  10. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al.
    BMC Genomics, 2015;16:471.
    PMID: 26092034 DOI: 10.1186/s12864-015-1692-0
    Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved.
    Matched MeSH terms: Virulence/genetics*
  11. Al-Maleki AR, Mariappan V, Vellasamy KM, Shankar EM, Tay ST, Vadivelu J
    J Proteomics, 2014 Jun 25;106:205-20.
    PMID: 24742602 DOI: 10.1016/j.jprot.2014.04.005
    Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A549 cells was significantly higher (2.73%) than WT (1.91%). In contrast, WT was significantly more efficient (0.63%) than SCV (0.31%) in invasiveness and in inducing cellular damage. Using 2-DE and MALDI TOF/TOF, 263 and 258 protein spots were detected in WT and SCV, respectively. Comparatively, 49 proteins were differentially expressed in SCV when compared with WT. Of these, 31 proteins were up-regulated, namely, nucleoside diphosphate kinase (Ndk), phosphoglycerate kinase (Pgk), thioredoxin (TrxA), putative ferritin DPS-family DNA-binding protein (DPS) and oxidoreductase (AhpC) that are known to be involved in adhesion, intracellular survival and persistence. However, among the 18 down-regulated proteins, enolase (Eno), elongation factor (EF-Tu) and universal stress-related proteins were associated with invasion and virulence. Differences observed in these protein profiles provide ample clues to their association with the morphotypic and phenotypic characteristics of colony variants, providing additional insights into the potential association of B. pseudomallei colony morphotypes with disease pathogenesis.
    Matched MeSH terms: Virulence/genetics
  12. Alfizah H, Rukman AH, Norazah A, Hamizah R, Ramelah M
    World J. Gastroenterol., 2013 Feb 28;19(8):1283-91.
    PMID: 23483193 DOI: 10.3748/wjg.v19.i8.1283
    To characterise the cag pathogenicity island in Helicobacter pylori (H. pylori) isolates by analysing the strains' vacA alleles and metronidazole susceptibilities in light of patient ethnicity and clinical outcome.
    Matched MeSH terms: Virulence/genetics
  13. Shuan Ju Teh C, Lin Thong K, Tein Ngoi S, Ahmad N, Balakrish Nair G, Ramamurthy T
    J. Gen. Appl. Microbiol., 2009 Dec;55(6):419-25.
    PMID: 20118606
    A pair of primers targeting the hlyA gene for Vibrio cholerae which could distinguish the classical from El Tor biotypes was designed and combined with other specific primers for ompW, rfb complex, and virulence genes such as ctxA, toxR, and tcpI in a multiplex PCR (m-PCR) assay. This m-PCR correctly identified 39 V. cholerae from clinical, water and seafood samples. The efficiency of this multiplex PCR (m-PCR) was compared with conventional biochemical and serogrouping methods. One O139 and 25 O1 V. cholerae strains including 10 environmental strains harbored all virulence-associated genes except 1 clinical strain which only had toxR and hlyA genes. Thirteen environmental strains were classified as non-O1/non-O139 and had the toxR and hlyA genes only. The detection limit of m-PCR was 7 x 10(4) cfu/ml. The m-PCR test was reliable and rapid and reduced the identification time to 4 h.
    Matched MeSH terms: Virulence/genetics
  14. Kuan CS, Cham CY, Singh G, Yew SM, Tan YC, Chong PS, et al.
    PLoS ONE, 2016;11(8):e0161008.
    PMID: 27570972 DOI: 10.1371/journal.pone.0161008
    Cladophialophora bantiana is a dematiaceous fungus with a predilection for causing central nervous system (CNS) infection manifesting as brain abscess in both immunocompetent and immunocompromised patients. In this paper, we report comprehensive genomic analyses of C. bantiana isolated from the brain abscess of an immunocompetent man, the first reported case in Malaysia and Southeast Asia. The identity of the fungus was determined using combined morphological analysis and multilocus phylogeny. The draft genome sequence of a neurotrophic fungus, C. bantiana UM 956 was generated using Illumina sequencing technology to dissect its genetic fundamental and basic biology. The assembled 37.1 Mb genome encodes 12,155 putative coding genes, of which, 1.01% are predicted transposable elements. Its genomic features support its saprophytic lifestyle, renowned for its versatility in decomposing hemicellulose and pectin components. The C. bantiana UM 956 was also found to carry some important putative genes that engaged in pathogenicity, iron uptake and homeostasis as well as adaptation to various stresses to enable the organism to survive in hostile microenvironment. This wealth of resource will further catalyse more downstream functional studies to provide better understanding on how this fungus can be a successful and persistent pathogen in human.
    Matched MeSH terms: Virulence/genetics
  15. Lim SY, Teh CSJ, Thong KL
    OMICS, 2017 10;21(10):592-602.
    PMID: 29049010 DOI: 10.1089/omi.2017.0119
    Enterococcus faecium is an opportunistic pathogen with a remarkable ability to acquire resistance toward multiple antibiotics, including those of last-resort drugs such as vancomycin and daptomycin. The occurrence of vancomycin-resistant E. faecium is on the rise and there is a need to understand the virulence of this organism. One of the factors that contributes to the virulence is the ability to form biofilms. Since bacteria in biofilm state are more resistant to antibiotics and host immune response, understanding the molecular mechanism of biofilm development is important to control biofilm-related diseases. The aim of this study was to determine the global gene expression profiles of an E. faecium strain, VREr5, during the early event of sessile growth compared with its planktonic phase through RNA-sequencing approach. The results clearly illustrated distinct expression profiles of the planktonic and biofilm cells. A total of 177 genes were overexpressed in the biofilm cells. Most of them encode for proteins involved in adherence, such as the ebpABCfm locus. Genes associated with plasmid replication, gene exchange, and protein synthesis were also upregulated during the early event of biofilm development. Furthermore, the transcriptome analysis also identified genes such as fsrB, luxS, and spx that might suppress biofilm formation in VREr5. The putative biofilm-related bee locus was found to be downregulated. These new findings could provide caveats for future studies on the regulation and maintenance of biofilm and development of biomarkers for biofilm-related diseases.
    Matched MeSH terms: Virulence/genetics
  16. Ho WS, Tan LK, Ooi PT, Yeo CC, Thong KL
    BMC Vet. Res., 2013;9:109.
    PMID: 23731465 DOI: 10.1186/1746-6148-9-109
    Postweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.
    Matched MeSH terms: Virulence/genetics
  17. Ortiz RH, Leon DA, Estevez HO, Martin A, Herrera JL, Romo LF, et al.
    Clin. Exp. Immunol., 2009 Aug;157(2):271-81.
    PMID: 19604267 DOI: 10.1111/j.1365-2249.2009.03941.x
    Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
    Matched MeSH terms: Virulence/genetics
  18. Tan HJ, Rizal AM, Rosmadi MY, Goh KL
    J. Gastroenterol. Hepatol., 2005 Apr;20(4):589-94.
    PMID: 15836708
    There is a geographic variation in Helicobacter pylori (HP) genotypes and virulence factors. Cytotoxin associated genes A (cagA) and E (cagE), and certain vacuolating cytotoxin (vacA) genotypes are associated with peptic ulcer disease (PUD). There is also a different prevalence of PUD among different ethnic groups in Malaysia. The present study compared the distribution of vacA alleles and cagA and cagE status in three ethnic groups residing in Kuala Lumpur, Malaysia, and their association with clinical outcome.
    Matched MeSH terms: Virulence/genetics
  19. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch. Virol., 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Virulence/genetics
  20. Hoque MM, Omar AR, Hair-Bejo M, Aini I
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):93-9.
    PMID: 12186763
    Previously we have shown that very virulent infectious bursal disease viruses (vvIBDV) that are SspI, TaqI and StyI positive (92/04, 97/61 and 94/B551) but not SspI and TaqI positive and StyI negative (94/273) cause high mortality, up to 80% in specific-pathogen-free chickens with significant damage of the bursal as well as nonbursal tissues. In this study, we sequenced the VP2 gene (1351 bp) of the 92/04, 94/273 and 94/B551 and compared them with other IBDV strains. All the isolates have the unique amino acid residues at positions 222A, 256I, 294I and 299S found in other vvIBDV strains. The deduced VP2 amino acids encoded by 92/04 is identical to the vvIBDV strains from Israel (IBDVKS), Japan (OKYM) and Europe (UK661), whereas the 94/273 and 94/B551 isolates have one to three amino acid substitutions. The 94/273 has two amino acid substitutions at positions 254 G to S and at 270 A to E that have not been reported before from vvIBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvIBDV strains. However, phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from the same origin as vvIBDV strains isolated from China, Japan and Europe. Even though antigenic index analysis of the 94/273 and 94/B551 indicated that the isolates are unique compared to other IBDV strains, their antigenic variation remain to be determined by monoclonal antibody study.
    Matched MeSH terms: Virulence/genetics
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links