Displaying all 10 publications

Abstract:
Sort:
  1. Amelia K, Khor CY, Shah FH, Bhore SJ
    Pharmacognosy Res, 2015 Apr-Jun;7(2):203-8.
    PMID: 25829796 DOI: 10.4103/0974-8490.150532
    Common beans (Phaseolus vulgaris L.) are widely consumed as a source of proteins and natural products. However, its yield needs to be increased. In line with the agenda of Phaseomics (an international consortium), work of expressed sequence tags (ESTs) generation from bean pods was initiated. Altogether, 5972 ESTs have been isolated. Alcohol dehydrogenase (AD) encoding gene cDNA was a noticeable transcript among the generated ESTs. This AD is an important enzyme; therefore, to understand more about it this study was undertaken.
    Matched MeSH terms: Alcohol Dehydrogenase
  2. Bakri MM, Rich AM, Cannon RD, Holmes AR
    Mol Oral Microbiol, 2015 Feb;30(1):27-38.
    PMID: 24975985 DOI: 10.1111/omi.12064
    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.
    Matched MeSH terms: Alcohol Dehydrogenase/genetics*; Alcohol Dehydrogenase/metabolism*
  3. Ong HH, Khor FV, Balasupramaniam K, Say YH
    Psychol Health Med, 2018 Feb;23(2):160-170.
    PMID: 28610454 DOI: 10.1080/13548506.2017.1338737
    Three single nucleotide polymorphisms (SNPs) in alcohol-metabolizing genes - ADH1B (Arg47His), ADH1C (Ile350Val) and ALDH2 (Glu504Lys) have been extensively associated with flush reaction and alcoholism. Therefore, we investigated the association of these three SNPs with alcohol-induced reactions (AIRs), alcoholism risk, personality and anthropometric traits among Malaysian university students. AIRs, Self-Rating of the Effects of Alcohol (SRE) and Ten-Item Personality were surveyed, anthropometric measurements and DNA samples were taken. Among 264 valid drinkers (111 males, 153 females; 229 ethnic Chinese, 35 ethnic Indians), the minor allele frequencies for ADH1B, ADH1C, ALDH2 among Chinese/Indians were .45/.07, .33/.40, .32/.41, respectively; distribution of ADH1B alleles significantly different between ethnicities. Current/former experiences of flushing, hives, heart palpitations after alcohol consumption; and sleepiness, headache reactions, early and overall SRE were significantly different between ethnicities and genders, respectively. Overall SRE score was associated with ADH1C and ALDH2 alleles. 'Openness to Experiences' was associated with ALDH2 genotypes and alleles; Glu/Glu or Glu carriers showed significantly higher means. ADH1B Arg/Arg and Arg carriers showed significantly higher total body and subcutaneous fats but association was abolished after controlling for ethnicity. In conclusion, gender and ethnicity, but not alcohol-metabolizing gene variants, play a role in influencing the manifestation of AIRs.
    Matched MeSH terms: Alcohol Dehydrogenase/genetics*
  4. Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA
    PeerJ, 2016;4:e1751.
    PMID: 26989608 DOI: 10.7717/peerj.1751
    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
    Matched MeSH terms: Alcohol Dehydrogenase
  5. Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA
    Front Microbiol, 2020;11:565608.
    PMID: 33013795 DOI: 10.3389/fmicb.2020.565608
    The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37-C40 and increase the ratio of C14-C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
    Matched MeSH terms: Alcohol Dehydrogenase
  6. Mohd Rezuan M Aspar, Rashidah Abdul Rahim, Mohamad Hekarl Uzir
    MyJurnal
    Yeast producing alcohol dehydrogenase 1 (YADH 1) enzyme has been used as a biocatalyst for the synthesis of an optically active flavouring compound known as citronellol. However, the slow growth of yeast (Saccharomyces cerevisiae) has deterred the progress of biotransformation. The main purpose of this work is to clone the genes producing YADH1 enzyme from yeast into a faster growing bacteria, Escherichia coli. Initially, the sequence of the gene encoding this protein has been identified in the S. cerevisiae Genome Databases (SGD). The so-called Yadh1 gene sequence is located from coordinate 159548 to 160594 on chromosome XV of yeast. Based on this information, two primer sequences (Forward and Reverse) were constructed. Each of these primers will bind to either end of the Yadh1 gene. The Yadh1 gene was then amplified using Polymerase Chain Reaction (PCR) technique. The amplified Yadh 1 gene was successfully cloned into a cloning vector, TOPO TA plasmid. This plasmid also contains a gene which confers resistance to ampicillin. This recombinant
    plasmid was then inserted into Escherichia coli TOP 10 using heat shock protocol at 42oC. Finally, the cloned bacteria containing the recombinant TOPO TA plasmid harbouring Yadh1 gene was able to grow on Luria Bertani (LB) media supplied with antibiotic.
    Matched MeSH terms: Alcohol Dehydrogenase
  7. Marpani F, Sárossy Z, Pinelo M, Meyer AS
    Biotechnol Bioeng, 2017 12;114(12):2762-2770.
    PMID: 28832942 DOI: 10.1002/bit.26405
    Enzymatic reduction of carbon dioxide (CO2 ) to methanol (CH3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO2 to CH3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH3 OH, a TTN of 160 and BPR of 24 μmol CH3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency.
    Matched MeSH terms: Alcohol Dehydrogenase/chemistry*
  8. Hasunuma T, Ismail KSK, Nambu Y, Kondo A
    J Biosci Bioeng, 2014 Feb;117(2):165-169.
    PMID: 23916856 DOI: 10.1016/j.jbiosc.2013.07.007
    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production.
    Matched MeSH terms: Alcohol Dehydrogenase/genetics; Alcohol Dehydrogenase/metabolism*
  9. Bon MC
    Electrophoresis, 1996 Jul;17(7):1248-52.
    PMID: 8855412
    A combination of a modified Feret' (Silvae Genet. 1971, 20, 46-50) extraction buffer and two types of electrophoresis with acrylamide and starch gels were used to characterize allozymes in mature vegetative tissue of a commercially high value species of rattans (Calamus subinermis). From the analysis of allelic segregation from single maternal rattans and their offspring, genetic control of the 16 observed banding zones, which were consistently scorable, was assumed. Seventeen gene loci were identified. The percentage of polymorphic loci within Calamus subinermis was much higher (70.5%) than expected levels of genetic diversity for tropical woody and non-woody species. It is thought that the protocol described may be applied to the analysis of the genetic diversity of all the endangered Calamus species.
    Matched MeSH terms: Alcohol Dehydrogenase/analysis; Alcohol Dehydrogenase/genetics
  10. Bakri MM, Cannon RD, Holmes AR, Rich AM
    J Oral Pathol Med, 2014 Oct;43(9):704-10.
    PMID: 24931506 DOI: 10.1111/jop.12193
    The aim of this study was to investigate the relationship between expression of Candida albicans alcohol dehydrogenases (ADH) genes in archival formalin-fixed paraffin-embedded (FFPE) samples from biopsies of leukoplakia.
    Matched MeSH terms: Alcohol Dehydrogenase/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links