METHODS: Data were analysed from patients in a multinational longitudinal cohort with known anti-dsDNA results from 2013 to 2021. Patients were categorized based on their anti-dsDNA results as persistently negative, fluctuating or persistently positive. Cox regression models were used to examine longitudinal associations of anti-dsDNA results with flare.
RESULTS: Data from 37 582 visits of 3484 patients were analysed. Of the patients 1029 (29.5%) had persistently positive anti-dsDNA and 1195 (34.3%) had fluctuating results. Anti-dsDNA expressed as a ratio to the normal cut-off was associated with the risk of subsequent flare, including in the persistently positive cohort (adjusted hazard ratio [HR] 1.56; 95% CI: 1.30, 1.87; P 3. Both increases and decreases in anti-dsDNA more than 2-fold compared with the previous visit were associated with increased risk of flare in the fluctuating cohort (adjusted HR 1.33; 95% CI: 1.08, 1.65; P = 0.008) and the persistently positive cohort (adjusted HR 1.36; 95% CI: 1.08, 1.71; P = 0.009).
CONCLUSION: Absolute value and change in anti-dsDNA titres predict flares, including in persistently anti-dsDNA positive patients. This indicates that repeat monitoring of dsDNA has value in routine testing.
OBJECTIVE: The purpose of this article is to provide readers with an update on the evaluation, diagnosis, and the treatment of juvenile dermatomyositis.
METHODS: A PubMed search was performed in Clinical Queries using the key term "juvenile dermatomyositis" in the search engine. The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews. The search was restricted to English literature. The information retrieved from the above search was used in the compilation of the present article.
RESULTS: Juvenile dermatomyositis is a chronic autoimmune inflammatory condition characterized by systemic capillary vasculopathy that primarily affects the skin and muscles with possible involvement of other organs. In 2017, the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR) developed diagnostic criteria for juvenile idiopathic inflammatory myopathies and juvenile dermatomyositis. In the absence of muscle biopsies which are infrequently performed in children, scores (in brackets) are assigned to four variables related to muscle weakness, three variables related to skin manifestations, one variable related to other clinical manifestations, and two variables related to laboratory measurements to discriminate idiopathic inflammatory myopathies from non-idiopathic inflammatory myopathies as follows: objective symmetric weakness, usually progressive, of the proximal upper extremities (0.7); objective symmetric weakness, usually progressive, of the proximal lower extremities (0.8); neck flexors relatively weaker than neck extensors (1.9); leg proximal muscles relatively weaker than distal muscles (0.9); heliotrope rash (3.1); Gottron papules (2.1); Gottron sign (3.3); dysphagia or esophageal dysmotility (0.7); the presence of anti-Jo-1 autoantibody (3.9); and elevated serum levels of muscle enzymes (1.3). In the absence of muscle biopsy, a definite diagnosis of idiopathic inflammatory myopathy can be made if the total score is ≥7.5. Patients whose age at onset of symptoms is less than 18 years and who meet the above criteria for idiopathic inflammatory myopathy and have a heliotrope rash, Gottron papules or Gottron sign are deemed to have juvenile dermatomyositis. The mainstay of therapy at the time of diagnosis is a high-dose corticosteroid (oral or intravenous) in combination with methotrexate.
CONCLUSION: For mild to moderate active muscle disease, early aggressive treatment with high-dose oral prednisone alone or in combination with methotrexate is the cornerstone of management. Pulse intravenous methylprednisolone is often preferred to oral prednisone in more severely affected patients, patients who respond poorly to oral prednisone, and those with gastrointestinal vasculopathy. Other steroid-sparing immunosuppressive agents such as cyclosporine and cyclophosphamide are reserved for patients with contraindications or intolerance to methotrexate and for refractory cases, as the use of these agents is associated with more adverse events. Various biological agents have been used in the treatment of juvenile dermatomyositis. Data on their efficacy are limited, and their use in the treatment of juvenile dermatomyositis is considered investigational.
CASE PRESENTATION: We described a 60-year-old man diagnosed with COVID-19 infection and later presented with a two-week history of myalgia, progressive limb weakness, and dysphagia. He had a Creatinine Kinase (CK) level of more than 10,000 U/L, was strongly positive for anti-signal recognition particle (SRP) and anti-Ro52 antibody, and a muscle biopsy revealed a paucity-inflammation necrotizing myopathy with randomly distributed necrotic fibers, which was consistent with necrotizing autoimmune myositis (NAM). He responded well clinically and biochemically to intravenous immunoglobulin, steroids and immunosuppressant and he was able to resume to his baseline.
CONCLUSION: SARS-CoV-2 may be associated with late-onset necrotizing myositis, mimicking autoimmune inflammatory myositis.
SETTINGS AND DESIGN: Case-control study at Rheumatology Clinic of Universiti Sains Malaysia Hospital.
SUBJECTS AND METHODS: The sera of SLE patients and HCs were tested for the presence of anti-CLIC2 and anti-HMGB1 autoantibodies using human recombinant proteins and ELISA methodologies. Other serological parameters were evaluated according to routine procedures, and patients' demographic and clinical data were obtained.
STATISTICAL ANALYSIS: Mann-Whitney U-test, Chi-square test, Fisher's exact test, and receiver operating characteristic analysis.
RESULTS: Anti-CLIC2 autoantibody levels were significantly higher in SLE patients compared to HCs (P = 0.0035), whereas anti-HMGB1 autoantibody levels were not significantly elevated (P = 0.7702). Anti-CLIC2 and anti-HMGB1 autoantibody levels were not associated with ANA pattern, anti-dsDNA, and CRP. Interestingly, SLEDAI score (≥6) was associated with anti-CLIC2 (P = 0.0046) and with anti-HMGB1 (P = 0.0091) autoantibody levels.
CONCLUSION: Our findings support the potential of using anti-CLIC2 autoantibodies as a novel biomarker for SLE patients. Both anti-CLIC2 and anti-HMGB1 autoantibody levels demonstrated potential in monitoring SLE disease activity.