In this research, we modify a previously developed assay for the quantification molybdenum blue to determine whether inhibitors to molybdate reduction in bacteria inhibits cellular reduction or inhibit the chemical formation of one of the intermediate of molybdenum blue; phosphomolybdate. We manage to prove that inhibition of molybdate reduction by phosphate and arsenate is at the level of phosphomolybdate and not cellular. We also prove that mercury is a physiological inhibitor to molybdate reduction. We suggest the use of this method to assess the effect of inhibitors and activators to molybdate reduction in bacteria.
Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.
The contribution of palm oil fuel ash (POFA), an agricultural waste as a low cost adsorbent for the removal of arsenite (As(III)) and arsenate (As(V)) was explored. Investigation on the adsorbency characteristics of POFA suspension revealed that the surface area, particle size, composition, and crystallinity of the SiO2 rich mullite structure were the crucial factors in ensuring a high adsorption capacity of the ions. Maximum adsorption capacities of As(III) and As(V) at 91.2 and 99.4 mg g-1, respectively, were obtained when POFA of 30 μm particle size was employed at pH 3 with the highest calcination temperature at 1150 °C. An optimum dosage of 1.0 g of dried POFA powder successfully removed 48.7% and 50.2% of As(III) and As(V), respectively. Molecular modeling using the density functional theory consequently identified the energy for the proposed reaction routes between the SiO- and As+ species. The high stability of the POFA suspension in water in conjunction with good adsorption capacity of As(III) and As(V) seen in this study, thus envisages its feasibility as a potential alternative absorbent for the remediation of water polluted with heavy metals.
Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min(-1) mg(-1) and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
A series of complexes of the type LAuCl where L = tris(p-tolylarsane), tris(m-tolylarsane), bis(diphenylarsano)ethane, and tris(naphthyl)arsane have been synthesized. All of the new complexes, 1-4, have been fully characterized by means of ¹H NMR and ¹³C NMR spectroscopy and single crystal X-ray crystallography. The structures of complexes 1-4 have been determined from X-ray diffraction data. The linear molecules have an average bond distance between gold-arsenic and gold-chlorine of 2.3390Å and 2.2846Å, respectively. Aurophilic interaction was prominent in complex 1 and 3, whereas complex 2 and 4 do not show any such interaction. The intermolecular gold interaction bond length was affected by the electronegativity of the molecule. The computed values calculated at DFT level using B3LYP function are in good agreement with the experimental results.